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Abstract

Climate change has affected households around the globe, but its impacts are not ho-
mogenous across space. We first show that disadvantaged demographic groups are dispro-
portionately exposed to climate change in the US and are less responsive in their adaptive
behavior. Motivated by these findings, we develop and estimate a spatial equilibrium model
of US local labor markets, allowing households to adapt to climate change by choosing
where to live and, conditional on that choice, energy and housing consumption. Our results
show that climate change to date has caused welfare losses 20% larger for Black households
relative to white households and twice as large for the lowest income decile relative to the
highest income decile. We estimate that these gaps will continue to grow under projections
of the future climate. Both the population’s ex-ante distribution and differential mobility
contribute to the observed disparities. We then evaluate a $3 billion place-based policy
from the Inflation Reduction Act, quantifying the tradeoff between subsizing places with
high climate damages and the resulting in-migration to climate-exposed areas.
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1 Introduction

Climate change has led to adverse economic outcomes across the globe as households face rising
temperatures, sea levels, and natural disaster risks (U. S. Global Change Research Program,
2023). However, expsore to climate change differs considerably across space, both globally
and within the United States (Hsiang et al., 2017; Wing et al., 2022; Cruz and Rossi-Hansberg,
2023). For example, climate change has given cold areas like New England milder winters
and hot regions like the Southeast more extreme summers. These changes have significant
distributional implications, as hotter locations within the US are generally poorer and less white
than the cold locations.

Assessing the welfare effects of climate change requires accounting not only for expo-
sure but also for households’ capacity to adapt. Adaptation may exacerbate disparities in
climate-related damages across demographic groups if economically advantaged households
have access to more effective mitigation strategies. Meanwhile disadvantaged households with
limited resources to adapt may experience larger impacts even when facing similar levels of
exposure (e.g., (Heilmann, Kahn, and Tang, 2021)). These differences in exposure and adap-
tive capacity may then deepen the environmental and social inequalities documented in the
environmental justice literature (Cain et al., 2023).

In this paper, we use a quantitative spatial equilibrium model of US local labor markets
in the spirit of Rosen (1979) and Roback (1982) to quantify heterogeneity in the effects of
climate change, allowing households to adapt through migration and home-energy use. In
the model, heterogeneous households make static choices over (1) where they live and (2)
how much energy and housing they consume. Potential wages earned, housing and energy
costs, and amenities available in each city affect household’s location choices. Wages and rents
are determined in equilibrium. Firms with varying productivity levels across cities demand
labor, using college- and non-college-educated workers as imperfect substitutes. Each city has a
housing supply curve, with rents responding endogenously to household location choices.

Households adapt to climate change in two ways in the model—through home energy de-
mand and migration. Air conditioning and residential energy use are critical forms of adaptation
to climate change (Barreca et al., 2016). We model demand for “comfort,” which households
produce using electricity, natural gas, and housing. This notion of comfort production cap-
tures the process by which people combine a house’s physical characteristics and the use of
appliances such as air conditioners or heaters powered by electricity or natural gas to create
a comfortable indoor space (Quigley and Rubinfeld, 1989). The local climate is an additional
input to the comfort production function, generating differences in the marginal productivity of
electricity, natural gas, and housing. For example, if outdoor temperatures increase, households
must use their air conditioners more intensely to maintain the same indoor temperature, thus
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increasing the cost of maintaining that temperature. Recent energy justice work suggests that
the energy costs associated with climate change will be higher for minority and low-income
households (e.g., Reames (2016); Lyubich (2020)). We capture these observed differences
in energy demand, allowing households to endogenously adjust their housing, electricity, and
natural gas demand in response to changes in outdoor climate.

The climate also affects the shared amenities of each location. These amenities capture
how households value the climate when assessing the desirability of a location—for example,
households may prefer milder summers. We characterize the amenity value of each city’s
climate using heating and cooling degree days, precipitation patterns, and natural disaster
risk. Spatial heterogeneity in exposure to climate change will alter some households’ relative
rankings of locations—allowing them to mitigate the impact of climate change by moving to a
new location (Cruz and Rossi-Hansberg, 2023). However, there is considerable heterogeneity
in household mobility, with the literature consistently finding that lower-income households are
less mobile than higher-income households (e.g., Kennan and Walker (2011); Depro, Timmins,
and O’Neil (2015); Piyapromdee (2021)). Thus, low-income households may have a more
difficult time migrating to mitigate the welfare effects of climate change.

We quantify the model with publicly available Census data from Ruggles et al. (2022),
historical climate data from PRISM (PRISM Climate Group, 2022), and natural disaster risk
data from First Street Foundation (First Street Foundation, 2022a,b). We specify the household
“comfort” production function and estimate its parameters using derived demand functions,
which are affected by prices of each good and the climate. The estimated comfort production
function allows us to predict energy and housing demand in counterfactual climates. We then
estimate the model’s key household location choice parameters using the two-step estimator
proposed in Berry, Levinsohn, and Pakes (2004), including the amenity value of climate. The
first step uses household-level location choices to estimate moving costs and the component of
city-level utility common among households of the same demographic group, which we call the
“mean utilities.” The second step uses linear regression to decompose the mean utilities into
contributions from wages, rents and energy bills, and climate amenities.

We use our estimated model to simulate the welfare effects from climate change across
households in the US, both that have already occurred and that we predict to occur over the
next century using state-of-the-art downscaled future climate models shared by the Climate
Impact Lab (Gergel et al., 2023). We find significant distributional consequences of climate
change both presently and in the future. Black and low-income households are particularly
vulnerable, experiencing negative impacts not only due to their initial exposure to climate
change but also due to disparities in their adaptive capacity. Black households have suffered
20% greater climate damages compared to white households from climate change to date, and
we project this disparity to widen under future emissions scenarios. In the most extreme future
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emissions projections, we estimate that the Black-white damage gap will increase by more than
eightfold by the end of the century. Additionally, the welfare losses from climate change accrue
disproportionately to lower-income households. The lowest income decile has welfare losses
twice as large as the highest income decile. Notably, the Black-white gap remains throughout
the income distribution.

We then decompose the factors contributing to the unequal impacts. First, we simulate
a counterfactual where we fix household locations, wages, and rents. We call this the “Me-
chanical” effect since it does not allow households to reoptimize across space, thus capturing
differences in exposure and comfort costs. However, we can eliminate differences in exposure
by comparing welfare within cities, therefore isolating differences in comfort costs. Next, we
simulate counterfactuals where households can sort across locations, but we fix wages and
rents at their baseline levels. We call this the “Sorting” effect as it reflects how differences
in mobility impact inequality relative to the Mechanical effect. We can again condition on
location in order to isolate differences in mobility from differences in exposure. Finally, we
allow complete flexibility—households can sort across locations, and all prices are determined
in equilibrium—to demonstrate the effect of endogenous changes in rents and wages on the
welfare effects of climate change.

Our model decomposition reveals that the ex-ante distribution of the population is the most
significant contributor to these gaps, followed by differences in mobility and, to less of an extent,
differences in energy efficiency. When we fix locations, we find that Black households are worse
off than white households by 0.8% of income. However, this gap disappears after conditioning
on baseline location, suggesting that differences in comfort costs are not contributing to the
average gap. When we allow households to sort across locations, the average gap remains at
the same level as when fixing locations, while the gap conditional on baseline location increases
to 0.5% of income. This result suggests that Black households are less able to mitigate welfare
losses through migration relative to similarly exposed white households.

We then use the model to evaluate the effects of a means-tested, place-based policy in-
spired by the US Environmental Protection Agency’s Community Change Grant program. The
Inflation Reduction Act (IRA) allocated $3 billion to the Community Change Grant program,
which funds projects in disadvantaged communities with the stated goal of improving climate
resiliency (US EPA, 2023). Our results suggest that while the distribution of funds under the
current program helps disadvantaged households generally, it does not target households with
the largest climate damages. We then test alternative spatial distributions of the subsidies.
Subsidizing places with high climate exposure benefits the households with the greatest losses
from climate change. However, these subsidies attract marginal households from elsewhere
in the country to high-climate-damage cities, thus increasing total exposure to climate change,
increasing rents, and decreasing wages in equilibrium. This spatial reallocation results in some
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of the indended benefits of the program dissipating as deadweight loss (Kline and Moretti,
2014). Alternatively, we test distributing the subsidies to “climate havens,” places where cli-
mate amenities have improved. While this distribution of subsidies reduces exposure to climate
change, most of the funds go to households that are already relatively well off from a climate
perspective. Policymakers must weigh the benefits of spatially targeted, place-based subsidies
with their associated effect on the distribution of households across space, thus increasing
climate exposure and resulting in deadweight loss.

Our paper follows a rich literature using spatial equilibrium models to estimate the eco-
nomic impact of the climate or other environmental goods (e.g., Bayer, Keohane, and Timmins
(2009); Hamilton and Phaneuf (2015); Albouy et al. (2016); Wrenn (2023)). In particular,
Albouy et al. (2016) estimate the amenity value of days across the temperature distribution
in the US, a methodology rely on in our own estimation approach. Wrenn (2023) estimates
household marginal willingness to pay for natural disasters using a Rosen-Roback model but
does not run counterfactuals or explore environmental justice considerations. Another set
of papers considers migration an adaptation mechanism to climate change in global spatial
equilibrium models (e.g., Desmet and Rossi-Hansberg (2015); Desmet et al. (2021); Cruz and
Rossi-Hansberg (2023)), but is more focused on quantifying differences in the welfare impacts
across space rather than by demographic group. Rudik et al. (2021) estimate a dynamic spatial
equilibrium model with daily temperature affecting amenities and firm productivity. Their
estimation strategy relies on migration flows between states, limiting their ability to quantify
differential effects between households. However, they incorporate additional mechanisms
through which the climate affects the economy—namely it’s effect on firm productivity. Thus
allowing for additional adaptation through trade and sectoral switching. We complement their
work by formally analyzing the distributional effects of climate change using household-level
data on race, education, and income.

This paper is also related to work about the effects of climate on energy use (e.g., Davis
and Gertler (2015); Rode et al. (2021); Doremus, Jacqz, and Johnston (2022); Auffhammer
(2022)). This work inspires our strategy for estimating the impact of climate on energy demand.
Auffhammer and Mansur (2014) emphasize a gap in our understanding of climate change’s
long-run extensive margin effects on energy demand. Our estimation strategy is able to capture
these extensive margin effects, as it reflects changes in energy use due to cliamte over a nearly
30 year period. Notably, we also address two concerns with the existing intensive margin
literature, (1) we explicitly deal with sorting across locations and (2) we do not assume a
constant interior temperature to measure welfare effects.

We also contribute to the environmental justice literature, recently reviewed in Cain et al.
(2023). Several papers in this literature study the interaction between household migration
decisions and environmental justice (e.g., Bayer, Keohane, and Timmins (2009); Depro, Tim-
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mins, and O’Neil (2015); Hausman and Stolper (2021)). These analyses focus on how sorting
contributes to differences in measured exposure to environmental pollutants, as described in
Banzhaf, Ma, and Timmins (2019). We extend this sorting mechanism to climate change.

Methodologically, our model builds on the static quantitative spatial equilibrium literature
with heterogeneous workers (e.g., Diamond (2016); Piyapromdee (2021); Colas and More-
house (2022)). These papers analyze other settings with spatial consequences, allowing rents
and wages respond endogenously in general equilibrium to household location choices. Using a
similar framework, Morehouse (2022) demonstrates that a fear of distributional consequences
is first-order concern for enacting serious climate-change regulation (e.g., a carbon tax). Here,
we show that there are also significant distributional effects from a lack of climate policy.

2 Data and Descriptive Evidence

We begin by describing the main data sources used throughout the analysis. We break these
into three categories: individual household data, climate data, and energy use data. We then
show descriptive evidence of the spatial heterogeneity in climate change to-date and how the
changes correlate with demographics.

2.1 Data

Household Data. We use repeated cross-sections from the 1990 and 2000 censuses and the
2010 and 2019 5-year aggregated ACS surveys (Ruggles et al., 2022). These give us household
demographic information, city, income, employment status, housing, electricity, and natural
gas expenditures. We follow standard sample selection and data-cleaning techniques described
in Appendix A. From these data, we estimate city-education-level wages, city-level rents, and
city-demographic group-level energy expenditure for each year. As these indices are standard
in the literature, we leave the details in Appendix A.2.

Climate Data We collect historical weather data from the PRISM climate group (PRISM
Climate Group, 2022). Specifically, we use the 4-kilometer grid of daily average temperature
and precipitation to create a panel of daily temperature and precipitation for each of the CBSAs
in our model.1 We aggregate the gridded data to the CBSA level using the weighted average of
grid cells within each CBSA, where we weight by the fraction of the CBSA covered by the grid
cell and the 1990 population in the grid cell. Population rasters come from SEDAC (CIESIN,
2017). We then construct various annual summary measures of climate in each city. Following
the recent literature, we count the number of days each year in a set of discrete temperature
1 Since the PRISM data only cover the continental US, we collect daily weather station observations from NOAA for

stations in Honolulu (Menne et al., 2012), then take the population-weighted average of those observations.
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bins (Auffhammer, 2022). We also calculate the percent of days with no rain as those with less
than one mm of precipitation. Since, in some cases, we are interested in the effects of changes
in climate, not short-run weather shocks, we take the 5-year moving averages of each of our
annual weather variables.

We pair this factual climate data with future climate simulations from the Climate Impact
Lab’s global downscaled projections for climate impacts research, CIP-GDPCIR (Gergel et al.,
2023). These data result from downscaling and debiasing2 25 climate models for four emissions
scenarios, each with daily precipitation and maximum and minimum surface temperature to
2100. We aggregate these to CBSA-level values by taking a population-weighted average as
we do with the PRISM data. We then take the average of the 25 climate models to form an
ensemble prediction of daily average temperature and total precipitation.

Finally, we use data on natural disaster risks—specifically, First Street Foundation’s fire
and flood scores aggregated to the zip-code level (First Street Foundation, 2022a,b). They use
state-of-the-art fire and flood models to calculate a risk score between 1 and 10 associated with
the respective disasters for every property in the US. We calculate various aggregations of the
scores for each CBSA—for example, the median score or the percent of properties in specific
score ranges. Appendix B has maps of the average risk scores by census tract. Unfortunately,
we only have access to a single set of scores—we use these scores in estimation but cannot vary
them in our counterfactual simulations.

Energy Data. We supplement data on household energy expenditure from the census with
state-level annual electricity prices from the EIA. We use these prices to back out energy usage
from total expenditures. To address the concern that some households may not report energy
expenditures separately from rent,3 we follow Glaeser and Kahn (2010) in using the Residential
Energy Consumption Survey (RECS) to correct this issue. The details of this estimation are in
Appendix A.2.1. We first estimate city-demographic group-level energy use for single-family
homeowners from the Census and ACS data, as those households are most likely to report their
expenditures accurately. We then use the RECS to estimate the relationship between energy
use for single-family homeowners and multi-family homeowners, single-family renters, and
multi-family renters.

2.2 Descriptive Evidence

Geography of climate change Climate change is often talked about as increases in average
global temperatures, but this masks significant spatial heterogeneity in the degree and impact
2 The original models produce output on a 1-degree grid, and the CIP-GDPCIR data downscale this to a 0.25-degree

grid.
3 If their utilities are included as part of rent, for example.
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(a) Change in the number of hot days per year (b) Change in the number cold days per year

Figure 1: Change in the number of hot and cold days between 1990 and 2019. Hot days are
those with an average temperature above the 90th percentile of the temperature distribution,
or about 80→F. Cold days are below the 10th percentile, or about 32→F. Difference taken
between 5 year moving averages and are censored at the 5th and 95th percentiles of grid cells.

of change. Figure 1 shows the change in the number of hot and cold days, above the 90th and
below the 10th percentiles of the 1990 temperature distribution, respectively, between 1990
and 2019. The hotter portions of the US have seen significant increases in hot days, while the
cold places in the US have seen significant decreases in cold days. Appendix B shows that the
eastern US has generally gotten wetter—higher annual precipitation and fewer days with no
rain.

Heterogeneity in the impact of climate change is important because it means climate
change alters the relative attractiveness of cities, not just the absolute level across all cities.
Some cities, such as those in the Northeast, may have become more attractive to households
as their winters are now milder than previously. Other cities, such as Oklahoma City or Dallas,
might have become less attractive now that their already-hot summers have become hotter.
These distortions in climate will lead to changes in the share of the population that chooses to
live in each city in the long run, with households taking climate into account when considering
the utility they would get from living in a particular city.

Demographics of climate change We are interested in determining whether climate change
has differentially affected demographic groups. Here we look at how variation in demographic
makeup between cities in 1990 compare to changes in the climate between 1990 and 2019. By
looking at demographics in 1990, we avoid endogenous city-choice sorting that has resulted
from changes in the climate.

Figure 2 shows a strong positive association between the share of a city’s population in
the lowest income quintile in 1990 and how cold and hot days have changed since 1990. Cities
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Figure 2: Relationship between income and climate change. Each point is a city, where the
size of the point represents the city’s 1990 population. Low income defined as households in
the bottom quintile of the national income distribution in 1990. Regression lines are weighted
by population.

with larger shares of low-income households have seen the largest increases in hot days and
little change in the number of cold days. Meanwhile, cities with a smaller share of low-income
households have seen bigger decreases in cold days and a smaller increase in hot days. Both of
these suggest that climate change is regressive—cities with more poor people have had changes
in their climate that require spending more on heating and cooling to maintain the same indoor
temperature relative to cities with fewer poor people. A similar relationship holds for the share
of non-white households in cities, as seen in Figure 3. Appendix B also demonstrates that a
similar relationship holds for total precipitation.

We can also summarize the change in climate experienced by the average white and non-
white household. A common measure of cooling demand is cooling degree days (CDD), which
is calculated based on the difference between the daily average temperature and 65→F, summed
over all days above 65→F. The average non-white household experienced 38 (5.1%) more CDDs
than the average white household in 1990. Between 1990 and 2019, CDDs increased by 110
(14.7%) for white households and 124 (15.9%) for non-white households. Thus, the average
non-white household experienced an additional 14 (13.5%) CDD increase relative to white
households, while already having a higher baseline CDD level.

These results suggest that disadvantaged demographic groups have faced disproportionate
exposure to the adverse effects of climate change. Lower-income and less white cities have more

9



Figure 3: Relationship between share non-white and climate. Each point is a city, where the
size of the point represents the city’s 1990 population. Low income defined as households in
the bottom quintile of the national income distribution in 1990. Regression lines are weighted
by population.

hot days, while higher-income and more white cities have fewer cold days. However, the welfare
effects of climate change may be more or less equitable once we account for adaptation. While
the ability to adapt is greater among more economically advantaged households, households
that are more exposed have a greater need for adaptation.

Energy use and demographics There is robust evidence from the energy justice literature
that Black households spend more on energy than observably similar white households (Reames,
2016; Lyubich, 2020). This gap suggests that there may also be differences across demographic
groups in the response of household energy demand to climate. We explore this in depth in
Appendix B.1. We first replicate the results in Lyubich (2020), finding a conditional energy
expenditure gap between Black and white households throughout the income distribution. We
then find that energy expenditures for Black households are more responsive to additional cold
weather and less responsive to additional hot weather than white households.

3 Model

In this section, we develop a Rosen (1979) and Roback (1982) style spatial equilibrium model
where households make a static, discrete choice of where to live. Conditional on that location,
households pick consumption of electricity, natural gas, housing, and the numeraire. Cities
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vary in their wages, rents, and amenities. The climate impacts household choices through two
mechanisms: the amenities available in each city and the marginal benefits of electricity, gas,
and housing consumption.

Amenities in the model reflect non-market characteristics of cities that make them more or
less desirable, including the climate. We use a rich characterization of the climate as amenities
to capture a broad range of values that households have for the climate, for example, outdoor
recreation or the risk of physical damage from natural disasters. Additionally, households
have an imperfect ability to transform the outdoor environment into a comfortable indoor
environment with housing and heating or cooling appliances. In the model, households use
housing, electricity, and natural gas as inputs to produce indoor “comfort”.4 The climate affects
the marginal benefits of inputs to the comfort production function. For example, if there are
fewer cold days in a year, households require less natural gas to heat their homes, which we
capture as a decrease in the marginal benefit of natural gas use.

We allow for rich heterogeneity in the parameters governing household mobility. We
specify an individual-level moving cost function to capture the psychic costs of relocating.5

Additionally, households have a location-specific idiosyncratic preference shock that allows us
to relax the spatial indifference condition of traditional Rosen-Roback models.6 The variance of
this preference shock governs the elasticities of household location choices. A higher variance
means that households have stronger individual preferences for locations relative to the shared
components of utility.

Firms in each city produce the tradable numeraire with imperfectly substitutable skilled
and unskilled labor. Each city also has an upward-sloping housing supply curve, the slope of
which reflects differences in difficulty in developing new housing. These firms and housing
supply curves complete the labor and housing markets that allow wages and rents to respond
endogenously to household location choices.7

3.1 Households

Let j ↑ J index cities and d ↑ D index demographic groups. We omit t subscripts for exposition,
but re-introduce them when describing the estimation. Household i living in city j receives
utility from a composite numeraire good, X, “comfort in dwelling” C, and location-specific
amenities A. We specify this utility in traditional Cobb-Douglas form,
4 We use a similar notion of comfort to that found in Quigley and Rubinfeld (1989).
5 Bayer, Keohane, and Timmins (2009) emphasize the importance of including these moving costs.
6 The spatial indifference condition requires households to receive the same utility from all cities in equilibrium.

Busso, Gregory, and Kline (2013) and Kline and Moretti (2014) demonstrate the importance of relaxing such a
constraint.

7 We define an equilibrium for our model in Appendix C.6.
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Ui j = X1↓ωCdCω
C
d

d j exp(Ai j).

Households produce comfort using electricity, gas, and housing, which we specify as a
nested CES production function. This production function captures the utility services provided
by electricity, gas, and housing. For example, electricity does not give people utility directly,
but an air conditioner can use electricity to provide cool indoor temperatures in a bedroom.
Specifically, let comfort C be:

C(H,E|d, j) =
(
Hεc + Eεc

)1/εc . (1)

where H is housing and E is energy. The measure of housing, H, represents both the quantity
and quality of housing—i.e. both an additional room in a house and a more recently built house
could be interpreted as higher values of H. ϑC = 1

1↓εC is the elasticity of substitution between
housing and energy. This aggregation reflects the imperfect complementarity or substitutability
between energy and housing. For example, larger houses may require more energy to heat or
cool, or a newer home may be better insulated, requiring less energy to heat or cool, all else
equal. E(·) is the household’s energy production function, which we parameterize as

E(E,G|d, j) =
(
ϖEd jE

εE
d j + ϖ

G
d jG

εE
d j

)1/εE
, (2)

where ϑE = 1
1↓εE is the elasticity of substitution between electricity, E, and natural gas, G.

Climate impacts the production of comfort through ϖmd j, where ϖmd j = f (Z j;ωm
d ) for m ↑ {E,G},

where Z j is a vector of local climate variables and ωm
d is a parameter vector governing the

potentially non-linear shape of f (·). Since we do not normalize these factor intensities to sum
to one, we can think of them as affecting the productivity of electricity and gas in both relative
and absolute terms, as well as the importance of energy relative to housing. We provide more
intuiton on the effect of climate on housing and energy demand in Section 3.1.1.

Finally, we specify amenities as

Ai j = εZ
d ·Z j + ϱd j + g( j, bi) + ϑdςi j,

where εZ
d is a vector of parameters on a vector of climate variables Z j, ϱd j is a shared, unob-

servable component of amenities, g( j, bi) are moving costs as a function of the household’s birth
state, bi and location j, and ςi j is an idiosyncratic preference draw with variance ϑd. A higher
variance in the idiosyncratic utility parameter reduces household mobility, as larger changes
in the other components of utility would be required to overcome the idiosyncratic term. We
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parameterize moving costs, g(·), as:

g( j, bi) = φst
d I
(

j ↑ bst
i

)
+ φdist

d ↼
(

j, bst
i

)
+ φdist2

d ↼2
(

j, bst
i

)
, (3)

where I
(

j ↑ bst
i

)
is an indicator for j being in household i’s birth state, ↼( j, bst

i ) is the Euclidean
distance between location j and the agent’s birth state bst

i , and ↼2( j, bst
i ) is the squared Euclidean

distance between j and bst
i . Thus, households get a utility premium, φst

d , for living in their birth
state, and pay an increasing utility cost the further they move from their birth state, captured
by the quadratic in distance.

Households are subject to the following budget constraint, conditional on choosing loca-
tion j,

Id j + Υd = X + PE
j E + PG

j G + PH
j H,

where Id j is earned income for demographic group d in city j, Υd is unearned income for
demographic group d, PE

j and PG
j are prices of electricity and gas, and PH

j is the price of
housing. We normalize the price of the composite to one.

We can find the household’s utility maximizing choices of electricity, gas, housing, and the
numeraire by first solving the nested cost minimizations associated with comfort production,
the details of which are in Appendix C.1. Households choose the cost-minimizing combination
of electricity and gas to produce a given amount of energy, which we can then use to solve for
a unit cost function for energy. We call this unit cost function the "price of energy",

PEd j =
(
ϖEd j
ϑEPE

j
1↓ϑE
+ ϖGd j

ϑEPG
j

1↓ϑE
) 1

1↓ϑE . (4)

Given this price of energy, households choose a cost-minimizing combination of housing and
energy to produce a given amount of comfort. Similarly, we can use the conditional demand
functions for housing and energy to solve for the unit cost function of comfort, which we’ll call
the "price of comfort,"

PCd j =
(
PH

d j
1↓ϑc
+ PEd j

1↓ϑc
) 1

1↓ϑc
. (5)

The price of comfort is a useful and rarely quantified object that reflects not just the total costs
of housing and energy, but also captures how households ability to substitute between housing,
electricity, and gas when they face changes in relative prices or productivities.
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We can now transform the problem into a simpler form where, conditional on their location
choice, households choose comfort and composite good consumption subject to a simplified
budget constraint,

max
X,C

X1↓ωCdCωCd exp(Ai j) s.t. Id j + Υd = X + PCd jCd j.

This gives us the familiar demand functions for consumption and comfort, X↔d j = (1↓ωc
d j)(Id j+Υd)

and C↔d j = ω
c
d j(Id j + Υd)/PCd j. These demand functions yield the following conditional indirect

utility function after taking logs,

vi j = log
(
Id j + Υd

)
↓ ωCd j log(PCd j) +ε

Z
d ·Z j + ϱd j + g( j, bi) + ϑdςi j. (6)

Assuming ςd is distributed type 1 extreme-value, we can write the probability household i
chooses location j as:

Pi j =
exp (ṽi j)∑
j exp(ṽi j)

, (7)

where ṽi j = vi jϑ↓1
d ↓ ςi j is the non-idiosyncratic portion of utility.

3.1.1 The impact of climate change on household decisions

In order to clarify the mechanisms through which climate affects household choices in the
model, we provide some partial equilibrium derivations here. Consider the effect of climate
variable zl

j ↑ Z j on household conditional indirect utility, holding income, rent, electricity, and
gas prices fixed:

↽vi j

↽zl
j
= ωl

d ↓
ωCd
PCd j

↗
↽PCd j

↽zl
j
. (8)

There are two channels through which a change in climate affects utility, the amenity
value of a location and the price of producing comfort. The change in amenity value of city
j is reflected by ωl

d ↑ εZ
d . If the change in climate is not desirable, such that ωl

d is negative
(i.e., temperatures get hotter in the summer), then the utility households get from living in

city j decreases. The second term ωCd
PCd j
↗ ↽P

C
d j

↽zl
j

reflects the effect of the change in the cost of

producing comfort inside one’s home. Suppose, that the climate variable is one that affects
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cooling demand, where ↽ϖE/↽zl = ⇀E is the marginal effect on the electricity share parameter
and ↽ϖG/↽zl = 0. Taking the derivative of the price of comfort from equation (5), we have

↽PCd j

↽zl
j
=
↓⇀E
εE

PE
j Ed j

Cd j
. (9)

The sign of this derivative hinges on the elasticity of substitution between electricity and gas,
ϑE = 1

1↓εE . If electricity and gas are gross substitutes, such that εE > 0 and ϑE > 1, then
↽PCd j/↽z

l
j < 0. If electricity and gas are gross complements, such that εE < 0 and ϑE < 1, then

↽PCd j/↽z
l
j > 0. In the gross complements case, increases in the intensity parameters ϖE or ϖG

caused by changes in the climate lead to a decrease in produced energy for given levels of
electricity and gas, thus decreasing the productivity of the household’s comfort function, and
increasing the price of comfort.

Plugging equation (9) into (10) and simplifying, we get

↽vi j

↽zl
j
= ωl

d +
⇀E
εE

PE
j Ed j

Id j + Υd
. (10)

We generally expect both of the terms in Equation (10) to have the same sign, since a change
in climate that makes outdoor amenities less desirable typically also makes it more expensive
to produce comfort inside.8

Importantly note that ↽vi j/↽zl
j is decreasing in income Id j and increasing in electricity use

Ed j. Thus, all else equal, households with lower incomes, or higher electricity usage conditional
on income will be more affected by changes in the climate. Appendix C.2 has derivations for
the marginal effect of climate on electricity, gas, and housing demand.

Now, we consider the effect of the climate variable on a household’s city choice probability
Pi j. Taking the derivative of equation (7), again holding income, rent, electricity, and gas prices
constant, we have,

dPi j

dzl
j
=

1
ϑd

↽vi j

↽zl
j

Pi j(1 ↓ Pi j). (11)

8 The sign of the second term is determined by the sign of ⇀E and εE, the rest of the variables in the second term
will always be positive. Using our previous example, ⇀E > 0 captures hotter weather requiring more electricity
maintain comfort. Thus, it would be opposite sign as ωl

d. If electricity and gas are gross complements, then εE < 0.
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This derivative makes it clear that larger values for variance of the idiosyncratic utility shock,
ϑd decrease mobility. Higher values of ϑd mean that the unobserved, idiosyncratic portion
of utility an individual has a higher relative weight as compared to wages, rents, and shared
amenities. If an individual has a particularly strong affinity for a city, for example due to their
social connections or cultural ties, this will make them less sensitive to changes in other aspects
of the city, such as wages, rent, or the climate. Note that in general equilibrium, a change in
the climate in one city can affect indirect utility in all other cities through endogenous changes
in wages and rents. Colas and Saulnier (2023) provide a general derivation for this case—the
intuition remains the same, higher values of the variance of idiosyncratic portion of utility
decrease responsiveness to the shared components of utility.

3.2 Firms

Firms competing in perfectly competitive markets combine college-educated labor and non-
college-educated labor to produce the composite numeraire good. We parameterize the firms’
production function as:

Y j = BjKωjL1↓ω
j , (12)

where Bj is city-specific total factor productivity, K j is capital use, and L j is a CES aggregator
between the two labor types. More specifically,

L j =
(
⇁ jS

εl
j + (1 ↓ ⇁ j)L

εl
j

) 1
εl , (13)

where ⇁ j is the college labor input use intensity in city j, S j is efficiency units of college labor, L j

is the efficiency units of non-college labor, and εl =
ϑl↓1
ϑl

is the elasticity of substitution between
college and non-college labor.

Assuming capital supply is perfectly elastic and supplied on an international market (at
rate r̄), we can write the firm’s optimal capital demand as

K,j =
BjωY j

r̄
.

Plugging this into the firm’s production function and then solving for the first order-conditions
yields the firm’s labor demand curves for college- and non-college educated labor:
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WS
j =B̃ jL1↓εl

j ⇁ jS
εl↓1
j

WL
j =B̃ jL1↓εl

j (1 ↓ ⇁ j)L
εl↓1
j

(14)

where B̃ j = (1 ↓ ω)B
1

1↓ω
j

(
ω
r̄

) ω
1↓ω . Appendix C.3 has additional details on the firm’s profit maxi-

mization problem.

3.3 Rents

Each city is characterized by a long-run, upward sloping rental supply curve, which we param-
eterize as

log(Ph
j) = a j + ζ j log(H j), (15)

where Ph
j is the price of housing in city j, a j is a city-specific intercept capturing construction

costs, ζ j is the inverse elasticity of housing supply, and H j is the total housing demand in the
city. The intercept, a j, varies across cities due to differences in baseline construction costs,
such as the cost of building materials or labor. The elasticity, ζ j, captures how responsive
housing prices are to changes in the quantity of housing demanded. The availability of land
for development and local regulatory constraints, such as zoning laws and land-use restrictions,
affect the inverse elasticity—more restrictive housing development conditions lead to steeper
increases in housing prices.

We assume that rental profit, Π, is distributed back to landowners lump-sum as unearned
income, Υd = sdΠ, where sd is demographic group d’s share of investment income. Rental
profits are

Π =
∑

j

(
PH

j H j ↓
exp a j

ζ j + 1
Hζ j+1

j

)
(16)

4 Estimation

In this section, we detail our estimation procedure. We focus our exposition on the estimation
of the household demand and labor supply parameters. We use city-level energy, wage, and
rent indices in estimating various parts of the model. Details for how we construct these indices
can be found in Appendix A.2.
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4.1 Energy and Housing Demand

We estimate the parameters of the household’s nested CES comfort function in two steps.
First, we use the relative demand functions to estimate the elasticity of substitution between
electricity and gas, ϑE, and then the elasticity of substitution between energy and housing,
ϑC in first differences. Then, we use the implied values for the ϖ’s to estimate the effect that
climate has on comfort production.

4.1.1 Elasticities of substitution

We first derive the first-order conditions from households choosing the cost minimizing com-
bination of electricity and gas to produce a certain quantity of energy. The details of this
cost-minimization problem are in Appendix D.1, which yields the following relative demand
function for electricity and gas,

log
(

Ed jt

Gd jt

)
= ϑE log




PG
jt

PE
jt


 + ϑE log



ϖEd jt

ϖGd jt


 . (17)

Since we observe quantities demanded and prices for both electricity and gas, we can estimate
ϑE using linear regression. We take first differences of Equation (17) to arrive at our estimating
equation,

∆ log
(

Ed jt

Gd jt

)
= ϑE∆ log




PG
jt

PE
jt


 + ∆ud jt, (18)

As we are concerned with endogeneity when regressing quantities of electricity and gas de-
manded on the prices of electricity of gas due to the simultaneity of supply and demand, we
follow Burke and Abayasekara (2018) and instrument the log ratio of retail electricity and
natural gas prices with the log ratio of lagged commercial electricity and natural gas prices,
where Pm,Comm

jt for m ↑ {E,G} is the price of electricity or natural gas for commercial customers.
Formally, the exclusion restriction is

E


∆ log




PG,Comm
j,t↓1

PE,Comm
j,t↓1


∆ud jt


 = 0, (19)

where ud jt is any other factor affecting the change in the ratio of electricity and gas demand.
By instrumenting with lagged commercial prices, we use variation in in energy prices that is
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driven by supply side factors and not correlated with other factors affecting residential energy
demand, including the climate.

We can then back out ϖEd jt/ϖ
G
d jt using equation (17), the estimate of ϑE, and our data on the

prices and quantities of both electricity and gas: log
(
ϖEd jt/ϖ

G
d jt

)
= 1
ϑE

log
(
Ed jt/Gd jt

)
↓ log

(
PG

jt/P
E
jt

)
.

This allows us to calculate normalized versions of energy, Ẽd jt, and the price of energy, P̃Ed jt,

where we have normalized energy by ϖGd jt
1/εE .9

Next, we estimate ϑC, the elasticity of substitution between housing and energy from the
comfort production function in a similar manner. Agents produce comfort in their dwelling
using housing and energy as inputs.10 Once again, we use the relative conditional demand
functions, but now for energy and housing, that result from households choosing the cost-
minimizing combination of housing and energy to produce a given amount of comfort,

log


Ẽd jt

Hd jt


 = ϑc log




PH
jt

P̃Ejt


 + ϑc

εc

εE
log ϖGd jt. (20)

Taking first differences yields our estimating equation,

∆ log


Ẽd jt

Hd jt


 = ϑC∆ log




PH
jt

P̃Ejt


 + ∆▷d jt. (21)

Note that we do not observe amenities, and many amenities are correlated with both housing
demand and rent. For example, consider a city with higher quality restaurants. These restau-
rants will cause increases in housing prices and housing demand, confounding our parameter
estimates. Therefore, we use instrumental variables to isolate exogenous variation in the ratio
of rent to energy price. Our instrument interacts labor demand shocks with land availability,
where the labor demand shocks are from Katz and Murphy (1992), and the interaction with
land availability follows Diamond (2016). We construct the labor demand shocks by multiply-
ing the historical share of workers with the change in the number of workers in the rest of the
country. Formally, the labor demand shock is

∆Zd jt =
∑

◁↑n
01990

d j◁ ↗
(
∆Nd,↓ j,◁,t

)
, (22)

9 These are Ẽd jt =
((
ϖE

d jt/ϖ
G
d jt

)
EεEd jt +GεEd jt

) 1
εE and P̃Ed j =

((
ϖE

d j/ϖ
G
d j

)ϑEPE
j

1↓ϑE + PG
j

1↓ϑE
) 1

1↓ϑE .
10 We estimate the quantity of housing, H, by regressing gross rent reported in the data on a set of observable

characteristics about the dwelling and a city fixed effect in logs. We interpret the city fixed effect as the cost per
unit of housing, and then back out the quantity of housing by dividing gross rent by this per unit cost of housing.
Appendix A.2.3 explains this process in detail.
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where 01990
d j◁t is the share of workers in demographic group d from city j that worked in industry

◁ in 1990 as a fraction of the total number of workers across all industries in demographic group
d in city j. ∆Nd,↓ j,◁,t is the change in the number of workers in industry ◁ between years t and
t ↓ 1 outside of city j. We interact this with the measure of housing supply elasticity from Saiz
(2010), which reflects geological and bureaucratic constraints on space to build homes in a city.
The exclusion restriction is

E

∆Zd jt∆▷d jt


= 0 (23)

E

Elasticity j∆Zd jt∆▷d jt


= 0. (24)

Any factors that effect relative energy and housing demand besides the relative prices are
included in ▷d jt, this includes climate and other amenities as described above. The instruments—
labor demand shocks interacted with a static measure of land availability in the city—are
unlikely to be correlated with changes in these other factors.

We can then use our estimate of ϑC, data on quantities and prices of housing and (nor-
malized) energy to back out ϖGd jt using equation (20). Since we already have estimates of
log
(
ϖEd jt/ϖ

G
d jt

)
from the first step, we are able to calculate both ϖGd jt and ϖEd jt.

4.1.2 Effect of climate on comfort production

The next step of our estimation is to measure the effect of climate on the ϖmd jt’s, capturing how
climate effects the productivity of electricity, gas, and housing. Note that while we normalize
both parameters in the outer nest of the comfort production CES to be equal to one, we place
no restrictions on ϖGd jt and ϖEd jt in the inner nest. Thus, ϖGd jt and ϖEd jt tell us not only the relative
importance of electricity and gas, but also the importance of energy relative to housing.

We parameterize the effect of climate on these intensity parameters as:

log ϖEd jt =
∑

1

⇀E(1)D1 jt + 2
E
j + 2

E
d + 3

E
d jt (25)

log ϖGd jt =
∑

1

⇀G(1)D1 jt + 2
G
j + 2

G
d + 3

G
d jt, (26)

where D1 jt is the number of days at temperature 1 in city j and year t, 2 j are city fixed effects, 2d

are demographic group fixed effects, and the 3d jt’s are random disturbances. ⇀m(1) for m ↑ {E,G}
is the marginal effect of an additional day at temperature 1 on electricity or gas. As we have
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limited data, we choose to allow for flexible non-linearity with relatively few parameters by
estimating the ⇀(1)’s with cubic splines. Specifically, for m ↑ {E,G}, let ⇀m(1) =

∑
s ⇀

m
s S s(1),

where S s(1) for s ↑ {1, . . . , S } are the standard basis functions of a cubic B-spline of degree
S . Substituting this into the above parameterization of the ϖ’s gives us our two estimating
equations,

log ϖEd jt =
∑

s
⇀Es



∑

1

S s(1)D1 jt


 + 2

E
j + 2

E
d + 3

E
d jt (27)

log ϖGd jt =
∑

s
⇀Gs



∑

1

S s(1)D1 jt


 + 2

G
j + 2

G
d + 3

G
d jt, (28)

Thus, we identify the marginal impacts of climate on comfort demand using random deviations
of weather outcomes from the long-run average climate within cities. For robustness, we use
various degrees for the spline, as well as alternative parameterizations of climate.

4.2 Labor Supply

We use an estimation procedure similar to that of Diamond (2016) to transform the nonlinear
discrete choice problem into a linear instrumental variables estimator. We proceed in two steps.
First, we define the mean utility associated with each choice as:

4d jt = 5
I
e log(Id jt + Υdt) + 5c

e log(Pc
d jt) + 5

Z
e · Z jt + ϱd jt, (29)

where 5I
e =

1
ϑe

, 5c
e = ↓

ωc
e
ϑe

and 5Z
e =

ωZ
e
ϑe

. We then write the household’s choice probability as:

Pi jt(4d jt;ϑdt) =
exp
(
4d jt + φ̃st

dtI
(

j ↑ bst
i

)
+ φ̃dist

dt ↼
(

j, bst
i

)
+ φ̃dist2

dt ↼
2
(

j, bst
i

))

∑
j↘ exp

(
4d j↘t + φ̃st

dtI
(

j↘ ↑ bst
i

)
+ φ̃dist

dt ↼
(

j↘, bst
i

)
+ φ̃dist2

dt ↼
2
(

j↘, bst
i

)) , (30)

where the tildes over the parameters indicate they are normalized by the variance of the
idiosyncratic preference shock, ϑe. Given these choice probabilities, the likelihood function
is:

LL(4d jt;ϑdt) =
∑

i↑d

∑

j

Iid jt log(Pi jt(4d jt;ϑdt)), (31)

where i ↑ D is the set of all households in demographic group d and Iid jt is an indicator equal
to one if the household chose city j in the data. We recover the 4d jt;ϑdt using the contraction
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mapping proposed in Berry, Levinsohn, and Pakes (2004).

We then decompose 4d jt from step one to estimate climate amenities. First, we use es-
timates from Diamond (2016) to calibrate 5w

e to 5.22 for college and 4.15 for non-college.
Additionally, we use the observed comfort expenditure shares for each city, demographic
group, and year to calibrate 5c

d jt. With these parameters, we calculate the residual deltas
as 4̂d jt = 4d jt ↓

(
5I

e log(Id jt) + 5c
d jt log(Pc

d jt)
)
. We then estimate the effects of climate on the mean-

utilities using a rich specification of the climate that includes heating and cooling degree days,
total precipitation, the number of days without precipitation, and measures of fire and flood
risk. Our estimating equation is

4̂d jt = ϖZ ·Z jt + 5
xX j + 0d + 0t + ϱd jt, (32)

where Z jt = {Fire j, Flood j,CDD jt,HDD jt,Precip jt,NoRain jt} is a vector of climate variables.
Fire j and Flood j are median fire and flood risk scores in city j that are static over time. CDD jt

and HDD jt are heating and cooling degree days. Precip jt is total precipitation and NoRain jt is
the proportion of days with no precipitation. X jt is a vector of geographic and demographic
controls including average elevation, average slope, percent of population married, average
age, and percent of population Black in each city and year. 0d and 0t are demographic group
and year fixed effects. This is a parisimonuous, but rich characterization of the climate that
allows us to capture the nuanced heterogeneity in the effects of climate change.

5 Parameter Estimates

Comfort Demand. Here, we report our parameter estimation for comfort demand. First, Table
1 shows the results from estimating Equations (18) and (21) with instrumental variables, where
the columns of the table have results for alternative fixed effects included in the regressions.
While the results are presented together for concision, they were run as two separate regressions.
Our preferred specification is in column 1, with demographic group and city fixed effects.

We estimate that electricity and gas are net complements, as we estimate the elasticity
of substitution, ϑE, to be less than one. Intuitively, a house that requires more electricity for
cooling also requires more gas to heat. The instrument for the log ratio of electricity and gas
prices, which is the log ratio of lagged commercial electricity and gas prices, is strong, with an
F-stat of well over 300 in our preferred specification. Housing and energy are net complements
as well. Suppose the price of housing goes down relative to energy prices. In that case, the
housing quantity demanded will increase, but so will the energy demanded since more energy
is required to keep that increased amount of housing comfortable. Here, we instrument the
log ratio of rent to energy price with the same instrument from energy estimation, and the
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Model: (1) (2) (3) (4) (5)

Parameters
ϑE 0.501↔↔↔ 0.525↔↔↔ 0.439↔↔↔ 0.432↔↔↔ 0.432↔↔↔

(0.063) (0.066) (0.070) (0.086) (0.087)
ϑC 0.594↔↔↔ 0.463↔↔↔ 0.316↔↔↔ 0.293 0.570

(0.079) (0.091) (0.092) (0.348) (0.436)

Fixed-effects
Dem Group Yes Yes Yes
City Yes Yes
Year Yes Yes

Fit statistics
Observations 1,260 1,260 1,260 1,260 1,260
F-test (1st stage), log (Pg/Pe) 378.82 363.51 392.65 391.88 391.25
F-test (1st stage), log (Ph/PE) 147.47 65.63 143.79 1.78 0.90

Clustered (City) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Coefficients are shown in the same column, but come from separate regressions. Regressions
are weighted by 1990 population. We exclude the division aggregation CBSA’s in estimation.

Table 1: Estimation results for the elasticity of substitution between electricity and gas, ϑE,
and the elasticity of substitution between energy and housing, ϑC.
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Katz-Murphy index interacted with housing supply elasticities from Saiz (2010). Again, our
first stage F-stat is very strong.

With the estimated elasticities of substitution in hand, we can calculate values for log ϖEd jt

and log ϖGd jt, which we then regress on climate variables to determine the impact of the climate
on the comfort production function. We use cubic B-splines with 7 degrees of freedom to flexibly
estimate the marginal effect of an additional day at a given temperature. For electricity, an ad-
ditional day at either a hotter or colder temperature than 65 degrees leads to additional energy
demand, reflecting that households use electricity for both heating and cooling. Additionally,
the demand response is stronger further into temperature extremes. Meanwhile, natural gas
has coefficients significantly different from zero only when the temperature is colder than 65
degrees. We investigate heterogeneity in the climate’s effect on comfort production in appendix
D.1, finding differences that are small in magnitude. We then use the above estimates to calcu-
late the marginal effect of climate on comfort prices, finding that the effect is larger for Black
households than white—though not outside of bootstrapped confidence intervals. Appendix
D.1 provides other figures describing patterns in comfort production across cities.

(a) Estimate of ⇀E(1), the marginal effect of
temperature on log ϖE .

(b) Estimate of ⇀G(1), the marginal effect of
temperature on log ϖG.

Figure 4: Estimation results for the effect of climate on comfort production, parameters ⇀E(1)
and ⇀G(1) using cubic splines with 7 degrees of freedom. The effect is normalized to a day with
an average temperature of 65 degrees F. Standard errors are calculated with clustered
bootstrapping using 10,000 draws, clustered by city-year. We have limited the range of
temperature to between the 1st and 99th percentile of average daily temperature, weighted by
1990 population.

Labor Supply. Figure 5 plots the estimated moving cost function (3) using parameters for
estimated by equation (31). We plot the moving cost estimates over the range of possible
distances from a household’s birthstate.11 We find that Black households are generally less
11 In both Figure 5 and in our simulations, we set the moving cost function equal to its minimum value for distances

beyond its estimated minimum.
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Figure 5: Moving cost estimates for Black and white households as a function of distance in
2019. We use estimates from Table A9, but hold moving costs constant at the minimum for
distances further than the estimated mininimum. The intercept reflects the parameter
estimates of φ̃st. The histogram shows the distribution of potential moves in 2019, excluding
the census divisions—so each household in the model shows up 70 times, once for each of the
cities we include in the model. We set moving costs equal to the minimum value of the moving
costs function at distances further beyond its estimated minimum.

mobile than other households. The birth-state premium parameter is positive, indicating a
utility premium, and larger for Black households. Furthermore, the distance parameter is
negative, indicating a utility penalty for moving further away from one’s birth state, and more
negative for Black households. We also find that non-college-educated workers are generally
less mobile than college-educated workers. Our estimates are quantitatively very close to those
in Colas and Morehouse (2022) and Diamond (2016). We include moving cost estimates for
all years in Appendix D.4.

Table 2 shows the parameter estimates for climate amenities. We show the robustness of
our controls to the inclusion of different geographic and demographic controls. Households
dislike both heating and cooling degree days and like days without rain. These estimates are
larger in magnitude than Albouy et al. (2016), but smaller than Rudik et al. (2021). Households
dislike both fire and flood risk—they are willing to pay 24% of income for a one standard
deviation decrease in fire risk and 6% of income for a one standard deviation decrease in flood
risk. We emphasize that we do not presently have natural disaster risk indices that vary over
time or climate scenarios. Appendix D.5 contains estimates for alternative specifications for
temperature portion of climate amenities, showing qualitatively similar results to our degree
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day specification.

Table 2: Estimation results for non-temperature climate amenities.

Dep. Var. Mean Utility Residual
Model: (1) (2) (3) (4)

Variables
HDD (1000’s) -1.73↔↔↔ -1.62↔↔↔ -1.60↔↔↔ -1.99↔↔↔

(0.14) (0.15) (0.15) (0.23)
CDD (1000’s) -1.54↔↔↔ -1.44↔↔↔ -1.03↔↔↔ -1.63↔↔↔

(0.28) (0.30) (0.28) (0.43)
Median Fire Risk -0.75↔↔↔ -0.60↔↔↔ -0.55↔↔↔ -0.62↔↔↔

(0.13) (0.14) (0.10) (0.11)
Median Flood Risk -0.83↔↔↔ -0.94↔↔↔ -0.68↔↔↔ -0.75↔↔↔

(0.15) (0.14) (0.11) (0.11)
Annual Precip (m) -2.81↔ -2.30 -2.03 -1.17

(1.69) (1.61) (1.59) (1.75)
Annual Precip Squared (sq m) 1.55↔ 1.42↔ 0.75 0.53

(0.81) (0.79) (0.73) (0.77)
Pr(No Rain) 7.00↔↔ 7.06↔↔ 7.10↔↔ 7.18↔↔

(2.99) (3.03) (2.86) (2.86)
Geographic Controls Yes Yes
Demographic Controls Yes Yes

Fixed-effects
Dem Group Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations 1,680 1,680 1,680 1,680
R2 0.94 0.94 0.95 0.95
Within R2 0.27 0.29 0.33 0.34

Heteroskedasticity-robust standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Regresions are weighted by population. We exclude the division aggregation CBSA’s in
estimation. Geographic controls include city’s average slope and elevation. Demographic
controls include percent married, average age, and percent black.

Table 3 shows the top and bottom ten cities according to their climate amenities in 2019
(ϖ̂Z · Z j,2019), with category-specific rankings also broken out. These rankings demonstrate
our model’s ability to richly characterize a city’s climate. For example, the top ten has cities
from California with mild summers, winters, and risks, as well as San Antonio—which ranks
poorly due to its hot summer weather but makes up for it by having very few cold days. Most
striking is the inclusion of Baton Rouge in the top ten and nearby New Orleans in the bottom
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ten. This is due to the difference in flood risk between the two cities—nearly every property in
New Orleans has at least moderate flood risk, whereas less than half do in Baton Rouge. Table
4 shows how climate amenities have changed between 1990 and 2019, using 5-year moving
averages. Increased hot temperatures have decreased amenities in most cities, while fewer
cold days have improved amenities. In already-hot places, the shape of the temerature-amenity
curve means that the decrease in amenities from more hot days outweighs the improvement
in amenities from fewer cold days. The opposite generally holds for places that are relatively
cold.

Table 3: Estimated climate amenity rankings by city for 2019. The Hot category is from
temperatures over 65F, Cold from temperatures below 65F, Rain from percent no rain days
and annual precipitation, and Risks from median fire and flood risk. Full sample degree day
specification with geographic and demographic controls.

Category Rankings

Rank City Hot Cold Rain Risks

Best Cities
1 San Jose-Sunnyvale-Santa Clara, CA 5 18 7 32
2 Los Angeles-Long Beach-Santa Ana, CA 40 7 2 54
3 San Diego-Carlsbad-San Marcos, CA 30 10 5 65
4 San Francisco-Oakland-Fremont, CA 2 21 10 59
5 Oxnard-Thousand Oaks-Ventura, CA 18 15 1 67
6 Fresno, CA 53 17 6 53
7 Sacramento–Arden-Arcade–Roseville, CA 38 22 9 57
8 Baton Rouge, LA 59 13 61 4
9 San Antonio, TX 61 12 13 58

10 Phoenix-Mesa-Scottsdale, AZ 69 6 3 64
Worst Cities

61 Grand Rapids-Wyoming, MI 7 67 42 14
62 Buffalo-Cheektowaga-Tonawanda, NY 10 64 58 7
63 Scranton–Wilkes-Barre, PA 12 59 51 43
64 Springfield, MA 16 62 25 44
65 Worcester, MA 8 63 32 48
66 Albany-Schenectady-Troy, NY 14 66 41 37
67 Rochester, NY 9 65 56 42
68 Minneapolis-St. Paul-Bloomington, MN-WI 11 70 20 22
69 New Orleans-Metairie-Kenner, LA 65 8 60 70
70 Syracuse, NY 4 68 67 45
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Table 4: Change in climate amenities from 1990 to 2019. Full sample degree day specification
with geographic and demographic controls.

Category Change (%)

City Change (%) Rain Hot Cold

Improving Cities
Hartford-West Hartford-East Hartford, CT 26.2 7.1 -22.4 41.5
Grand Rapids-Wyoming, MI 25.7 0.3 -2.7 28.1
Honolulu, HI 23.8 17.8 6.0 -0.1
New Haven-Milford, CT 23.1 5.5 -17.7 35.3
Denver-Aurora, CO 21.6 -12.2 -16.0 49.8
San Antonio, TX 19.8 15.3 -14.2 18.7
Worcester, MA 19.2 -11.9 -15.5 46.7
Portland-Vancouver-Beaverton, OR-WA 18.9 -3.0 -11.7 33.6
Buffalo-Cheektowaga-Tonawanda, NY 18.2 10.1 -10.1 18.3
Bridgeport-Stamford-Norwalk, CT 17.1 1.3 -17.3 33.2

Worsening Cities
St. Louis, MO-IL -27.6 -34.2 -9.4 16.0
Dayton, OH -28.3 -40.6 -11.2 23.4
Houston-Baytown-Sugar Land, TX -31.1 -27.2 -35.0 31.1
Louisville, KY-IN -32.8 -47.8 -21.4 36.4
Baton Rouge, LA -35.9 -30.5 -35.5 30.1
Tampa-St. Petersburg-Clearwater, FL -62.8 -44.6 -28.6 10.4
Jacksonville, FL -68.6 -55.3 -39.9 26.5
Orlando, FL -70.4 -41.9 -42.7 14.2
Miami-Fort Lauderdale-Miami Beach, FL -73.0 -40.3 -39.8 7.1
New Orleans-Metairie-Kenner, LA -73.4 -54.4 -54.8 35.8

Model Fit We use our estimated parameters to simulate baseline results for each year. Ap-
pendix C.7 provides detailed steps to solve the model’s equilibrium given climate Z̃. In summary,
we begin with population share and housing price guesses, use those guesses to calculate house-
hold energy and housing demand, wages, and comfort prices, and then recalculate population
shares given those wages and comfort prices. If the population shares match the original guess,
then we have found the equilibrium. If they do not match, we update our initial guess and
repeat until they do match. In the baseline simulations, we plug in the actual climate values
as Z̃ to validate the model’s predictions against actual data from each of our four years of
data. Figure 6 shows the simulated shares of each demographic group that choose to live in a
particular city against the actual population shares and simulated housing, electricity, and gas
demand relative to actual electricity, housing, and gas demand. Each observation represents a
demographic group in a city for the given year.
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(a) Simulated vs actual population shares. (b) Simulated vs actual housing demand.

(c) Simulated vs actual electricity demand. (d) Simulated vs actual natural gas demand.

Figure 6: Simulations use actual climate data across all years. The size of the observations
represents the population of that demographic group.

6 The welfare effects of climate change

We calculate the welfare effects from climate change using compensating variation (CV), de-
fined as the percent of baseline income that households would need to receive in order to
maintain the same level of utility under the counterfactual climate, Z̃, as they do under the
current climate, Z.12 Household i’s compensating variation is given by:
12 In all counterfactuals, we hold natural disaster risk constant, as we only have a single set of natural disaster risk

scores.
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CVi =
(
E[Vi(Z̃)] ↓ E[Vi(Z)]

)
↗ 1
5I

e
, (33)

where Vi(Z) = vi j↔(Z) is household i’s indirect utility with climate Z, evaluated at equilibrium
choices j↔ and prices. We calculate these equilibrium choices using the same algorithm refer-
enced in the model fit section, which is detailed in Appendix C.7. Taking the expectation of
indirect utility over the idiosyncratic shocks gives us

E[Vi(Z)] =φ̄ + log



∑

j↘↑J

exp
(
5I

e log Id j↘ + 5
C
d j↘ log PCd (Z j↘) + 5Z

d · Z j↘ + ϱd j↘ + g( j↘, bi)
)

 ,

where φ̄ is Euler’s constant. Note that the price of comfort, PCd (Z j), is a function of local climate
variables.

6.1 Effect of climate change to-date

We begin with a simulation where counterfactual climate comes from the average climate
between 1986 and 1990 before there were any significant human-caused changes to the cli-
mate. We first analyze how the effects of climate change vary across space. Figure 7a shows
compensating variation by state—showing that already hot places are hurt by more than cool
places. Generally, the South and Midwest are worse off than the Northeast and West, owing
to increases in temperature being unpleasant in an already hot location and pleasant in a cool
location. Additionally, fewer rain-free days in the Midwest have decreased amenities. The
effect of climate on the energy price drives some of this heterogeneity, shown in Figure 7b.
Producing comfort has become more expensive in hot places and less expensive in cold places.
Figure 7c shows that households migrate in away from parts of the South and Midwest and
into the Northeast and West.13 These spatial changes suggest that the baseline distribution of
the population is essential in determining differences in welfare effects across demographic
groups.

There are significant differences in the welfare effect of climate change across the income
distribution. We calculate the average compensating variation by income decile and race in
Figure 8. The welfare effects are worse for lower-income households among all races. CV as
a percent of income is twice as high for the lowest income decile relative to the highest—the
lowest income decile has welfare losses of 4%pts of income, whereas the highest income decile
13 Table A11 has the top and bottom 10 cities by change in population. Maps of rent, wages, and comfort demand

are available in Figure A18. Additionally, Figure A20 shows how the skill ratio affects wages in the counterfactual.
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(a) Average CV in each state.

(b) Average change in energy price, PE

(c) Average percent change in population.

Figure 7: General equilibrium changes in welfare, energy prices, and population across states
comparing the 2019 climate to the 1980s climate. Averages are weighted by population. For
states without any CBSAs in them, we use the value for the census division in which the state
is located.
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is only worse off by 2%pts of income. The welfare effects for Black households are worse for
Black households relative to white households within every income decile.14 The mean welfare
loss for Black households is twenty percent larger than that of white households—2.5%pts of
income for white households relative to 3.0%pts for Black households.

Figure 8: Compensating Variation by income decile and race in 2019 if the climate was the
same as in 1990. Income deciles are calculated relative to the entire population.

We decompose the proposed mechanisms driving the observed gaps in CV between white
and Black households. The results of this decomposition are in Table 5.15 We run two simu-
lations in addition to the fully flexible model to do this. First, we fix locations and wages—
reflecting the “Mechanical” effect of changing the climate without allowing households to
migrate. In this simulation, households still optimally choose their comfort demand. Therefore,
we allow local housing markets to clear since housing demand responds to climate as part of
comfort production. Column (1) of the first row of Table 5 shows that the average gap in CV
between Black and white households is -0.8%pts, reflecting both disparities in the sensitivity in
comfort price and in exposure. We can compare within baseline cities to control for differences
in exposure. Column (2) shows that after conditioning on baseline city, there is no welfare gap
between Black and white households. Thus, differences in sensitivity to comfort prices are not
14 Appendix Figure A19 shows the full distribution of CVi accross all households.
15 Table A10 has these results in levels rather than differences between races.
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driving the gap.

In a second simulation, we allow households to sort across locations, fix wages to their
original level, and keep rent at the same level as in the Mechanical simulation. This “Sorting”
simulation tells us the effect of allowing households to reoptimize their location choice across
space. As seen in the second row of Columnn (1) Table 5, allowing for sorting marginally
increases the unconditional gap. However, two-thirds of the gap remains after controlling for
baseline location. Thus, white households can better take advantage of migration as an adap-
tation mechanism conditional on exposure. These differences are not explained by differences
in the ratio of college- to not-college-educated households within the race groups. Column (3)
shows the CV gap within baseline city choice and education level, only reducing the gap from
the Sorting simulation by 0.1%pts.

Finally, the third row of Table 5 shows the effects of adjustments to rents and wages in
equilibrium. The unconditional welfare gap shrinks—households migrating from the South to
the West or Northeast depress wages and inflate rents in their new cities, while the opposite
happens in the South. These changes reduce the unconditional gap due to the differences in the
baseline populations in those regions. The within-city gap remains, but education level explains
more of that gap than in the Sorting simulation. Since the ratio of college- to non-college
educated workers determines wages in each city, greater out-migration of college educated
workers from high-climate-damage cities actually decrease wages for non-college educated
households in those cities. This is true despite the overall population decreasing.

In summary, we find considerable gaps in the welfare effects of climate change to date
across incomes and races. These gaps are explained by both the ex-ante population distribu-
tion and differences in mobility. Differences in energy efficiency do not seem to be a major
contributor.
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Black-white CV Gap (%pt of income)

Unconditional Within City Within City-Education
Simulation (1) (2) (3)

Mechanical -0.8 0.0 0.0
Sorting -0.9 -0.6 -0.5
Full Effects -0.5 -0.3 -0.1

Table 5: Decomposition of welfare effects. Column (1) calculates the average difference in CV
between Black and white households from the climate change to date simulations. Column (2)
calculates the average welfare gaps after taking out the average effect for each city (equivalent
to adding a city fixed effect). Column (3) calculates the average welfare gaps within city and
education level (college and non-college). The “Mechanical” simulation fixes locations and
wages. Local housing markets are allowed to clear in response to changes in housing demand
from change in climate. The “Sorting” simulation keeps wages fixed and rents the same as the
Mechanical simulation, but allows households to reoptimize across space. “Full Effects” is the
fully flexible general equilibrium model.

6.2 The black-white gap simulated under future emissions scenarios

Next, we simulate the model under different emissions scenarios to 2100 using the CIL-GDPCIR
data. We then calculate the Black-white gap as the change in welfare for Black households
relative to their baseline welfare minus the change in welfare for white households relative
to their baseline welfare. Figure 9 shows the evolution of the Black-white welfare gap, which
generally grows with more emissions.

Under the lowest emissions scenario (SSP1-2.6), which assumes zero emissions by 2050
and 1.8 degrees of warming by the end of the century, climate change is expected to hurt Black
households by an additional 0.5%pts of income relative to white households. Under the more
likely, higher emissions scenarios, this gap grows to between 2%pts to 4%pts depending on the
emissions scenario. This gap highlights the need for equity to be an important part of climate
policy in the future.
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Figure 9: Time series of the Black-white welfare gap under different emissions scenarios. We
simulate general equilibrium in the model using future climate scenarios with model
parameters set to their 2019 values. We then calculate CV for future years relative to the 2020
climate. The CV gap is the difference in CV between Black and white households.

7 IRA inspired place-based, means-tested subsidies

Given the unequal impacts of climate change discussed previously, we now study how gov-
ernment policy interacts with the effects of climate change. We incorporate a means-tested,
place-based subsidy into our main model, the structure and magnitude of which are inspired
by a new Inflation Reduction Act (IRA) program administered by the US EPA. We compare
the effects of climate change to date with and without these subsidies and test alternative
distributions of these funds across space.

The IRA contains many programs designed to address climate change. One such program is
the US EPA’s Community Change Grant Program, for which the IRA allocated $3 billion to fund
projects in disadvantaged communities related to climate resiliency and adaptation, mitigating
climate and health risks, and several other similar categories (US EPA, 2023). In describing the
program, Brenda Mallory, the Chair for the White House Council on Environmental Quality, said,
“As part of the President’s Justice40 Initiative, these grants will help disadvantaged communities
tackle environmental and climate justice challenges they face by reducing pollution, increasing
resilience to impacts from climate change, and building community capacity to see these
projects through” (US EPA, 2024).16 Applications for the primary round of funding are due in
16 President Biden’s Justice40 initiative seeks to provide 40 percent of the benefits of federal rulemaking on climate,

clean energy, affordable housing, and other related categories to disadvantaged communities (Executive Office of
the President, 2021). The administration defines a disadvantaged community as places “historically marginalized
and overburdened by pollution and underinvestment in housing, transportation, water and wastewater infrastruc-
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November of 2024.17 There are few restrictions on how the EPA distributes Community Change
Grant funds across space. In principle, any disadvantaged community is eligible for a project.18

We do not model the effects of these projects directly, both because the EPA has not yet awarded
most of the funds and because the projects themselves will vary considerably in their structure
and goals. However, we are able to capture two important aspects of the program, which is
that these projects are place based and only disadvantaged communities are eligible.

We incorporate the Community Change grants into the model by considering them as
means-tested, place-based subsidies given to households lump sum. The government decides
the total size of the program, G, the portion of the total given to each city, wt j, where

∑
j wt j = 1,

and the income threshold for eligibility, Ithresh. Households who choose to live in city j and are
below the income threshold, Ithresh, divide the subsidy equally. Ndisad

j =


i Pi jI
(
Id j < Ithresh

)
di

gives the total population in city j that below the income threshold, where Pi j is household i’s
probability of choosing city j, as defined by Equation (7). We set the income threshold equal to
the 41st percentile of income, matching the share of the population living in a disadvantaged
community according to the 2020 Decennial Census. We calculate the subsidies for each
city and demographic group as IRAd j =

Gwt j

Ndisad
j
I
(
Id j < Ithresh

)
. A flat tax paid by all households

funds the subsidy program, G =


i 1Id jdi. Income in city j for demographic group d is now
(1 ↓ 1)Id j + Υd + IRAd j.

We consider three policy alternatives that vary the spatial distribution of the subsidies
across cities, wt j. These distributions give subsidies to cities based on (1) the percent of the
national disadvantaged population living in each city, (2) the share of losses in climate amenities
for cities that experience losses in amenities, or (3) the share of gains in climate amenities for
cities that experience gains in amenities. Distributing funds equally based on the disadvantaged
population most closely mirrors the current program.

We design the second and third distributions to capture the tradeoff between helping
people with high climate damages and the general equilibrium consequences of place-based
subsidies (see e.g., Busso, Gregory, and Kline (2013), Kline and Moretti (2014)). If households

ture, and health care” Executive Office of the President (2021). In practice, the Climate and Economic Justice
Screening Tool classifies disadvantaged tracts based on eight different categories: climate, energy, health, housing,
legacy pollution, transportation, or workforce development. For all but workforce development, communities are
disadvantaged if they are above the 65th percentile for the share of low-income households and above a threshold
for exposure to various environmental stressors (e.g., above the 90th percentile expected agricultural, building,
or population loss, projected flood, or fire risk for the climate change category).

17 An initial round of $325 million in funding was awarded in July of 2024. While the specific projects take on a
wide array of activities, the most common types are providing weatherization assistance, creating “community
resilience hubs”, improving public parks, and installing solar panels and energy storage.

18 Appendix Figure A21 shows the proportion of the population living in a disadvantaged community by state.
While there is some variation, all states have a significant portion of their population living in disadvantaged
communities. Several target areas place some spatial restrictions on funds: $150 million for tribes in Alaska, $50
million for territories, and $100 million for southern border communities.
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are immobile, then giving subsidies to places with high climate damages will also benefit people
who have the largest welfare losses from climate change. However, since households are mobile,
these subsidies induce some marginal households to migrate into these high climate damage
cities—increasing rents and decreasing wages, thus dampening the intended welfare effects
while also increasing exposure to future climate change. Therefore, we also consider giving
subsidies to places that have benefited from climate change, which we’ll refer to as “climate
havens.” Distributing funds to climate havens will decrease exposure to climate change but
also gives subsidies to many “inframarginal” households who would have lived in a climate
haven regardless of the additional subsidies and thus are already better off from climate change
relative to households from other locations.

We simulate the full model, allowing households to sort across space and for wages and
rents to respond to these new choices. We consider the equilibrium with the 2019 climate and
no subsidies as the baseline and then quantify changes from that equilibrium when adding the
three different distributions of subsidies described above. Since the magnitude of the effects
will depend on the total size of the program, we present results per dollar of total subsidies.
Appendix E.1 compares results across a wide range of values for G, from $30 million to $10
billion.

Additionally, we calculate what we call “mechanical CV,” or the subsidies net of taxes
that each household would expect to receive if we hold locations, wages, and rents fixed to
equilibrium choices under the 2019 climate without subsidies. This allows us to determine
how important migration and general equilibrium effects are relative to the mechanical effect
of introducing subsidies. Each individual’s mechanical CV is the weighted average of subsidies
net of taxes across cities expressed as a percent of income, weighted by the probability they
choose each city in the 2019 climate equilibrium, denoted P↔i j,

CV Mech
id j =

∑

j

P↔i j

IRAd j(P↔i j) ↓ 1Id j

Id j

Figure 10 shows compensating variation from the introduction of subsidies relative to the
baseline 2019 climate simulation. We first order all households according to the welfare effects
from climate change to date, assigning each household to a baseline CV decile—households
worst off from climate change to date are in the first decile, while those relatively well off
are in the tenth decile. We then break households up into three groups according to their
baseline income percentile—those below the 10th percentile, those between the 10th and
50th percentile, and those above the 50th percentile.19 We plot the average CV in each group
19 Figure A22 shows the distribution of households across baseline CV for each of these baseline income groups. We

calculate these household-level income percentiles by taking the average income the household would earn in
each city, weighted by the probability that the household chooses to live there.
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Figure 10: CV from subsidies relative to CV from climate change to date for different spatial
distributions of IRA subsidies. The X-axis is a household’s decile in CV from the baseline
simulation comparing 2019 and 1990 climates. The Y-axis is the average CV per dollar of total
government spending with subsidies relative to without subsidies under the 2019 climate. We
split the figure into three income bins, below the 10th percentile, 10th-50th percentile, and
above the 50th percentile, based on household expected income in the baseline simulation.
The “Mechanical” simulation takes choice probabilities from the baseline simulation and
calculates expected subsidies given those choices—which is what would happen if households
were not allowed to reoptimize their location choices after the government introduces
subsidies. The “Fully flexible” simulations allow for full flexibility in choosing locations. See
description in the text on the subsidy distributions

per dollar of total government spending from both the fully flexible model (solid lines) and
mechanical CV (dashed lines), where we fix locations, rents, and wages to baseline levels.

Disadvantaged Population The green lines in Figure 10 show results when we distribute
funds according to cities based on their share of the national disadvantaged population. This
distribution is most similar to the current program, given we do not yet know how the EPA will
distribute funds across space.20 This distribution helps low-income households generally but
not proportionately to welfare losses from climate change. Households in the bottom income
decile are better off by 0.22%pts of income per billion dollars spent, while households above
median income are marginally worse off from paying the tax. Additionally, these subsidies
20 The final distribution of funds may not be proportional to the disadvantaged population if there are differences

across space in the likelihood of a group representing a disadvantaged community applying for or receiving
funding.
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do not alter the spatial distribution of households.21 While there is some variation in the
share of the population in each city that lives in a disadvantaged community (See Figure
A21), this variation is not large enough to generate differences in subsidy levels that alter
many household’s decision on where to live. Thus, there is little difference in CV between the
mechanical and fully flexible simulations.

Negative Climate Change The orange lines in Figure 10 show results when we distribute
funds proportional to each city’s losses in climate amenities in 2019 relative to 1990. This
distribution does the best job of helping households with the most significant welfare losses
from climate change—it is the only distribution where CV from subsidies is decreasing in the
baseline CV percentile.22 Households in the lowest income decile and lowest baseline CV decile
are better off by 0.5%pts per billion spent. In contrast, those in the highest baseline CV decile
are unaffected by the subsidies.

However, the large spatial differentials in subsidies lead some households to migrate into
the high climate damage cities, leading to increases in rents and decreases in non-college-
educated wages that dissipate a portion of the benefits to those most hurt by climate change
in the baseline. The overall benefits to households in the lowest income decile are 19% lower
in the fully flexible simulation than under the mechanical simulation.23 This reallocation has
important environmental justice implications. The orange lines in Figure 11 show the change
in average CDD, HDD, fire risk, and flood risk for households in the lowest income decile. Gen-
erally, low-income households move to hotter and more flood-prone areas under the Negative
Climate Change distribution. Since there is effectively no reallocation of high-income house-
holds across space, these changes mean that this distribution of subsidies would increase the
ex-ante exposure gap we found to drive the baseline welfare effects from climate change.

Positive Climate Change The purple lines in Figure 10 show results when we distribute the
funds to places that have benefitted from climate change to date. This distribution is increasing
in the baseline CV percentile, primarily benefitting households who are already relatively well
off from climate change. For example, the average household in the lowest income decile and
highest baseline CV decile has effectively zero welfare effects from climate change to date,
relative to low-income households in the first baseline CV decile whose welfare losses are
equivalent to 7%pts of income (See Figure A23 for CV relative to the 1990 climate). These
same households are the largest benefactors of the Positive Climate Change distribution, with
21 Appendix Figure A25 shows changes in population caused by the subsidies.
22 Appendix Figure A23 shows the CV relative to the 1990 climate, along with the baseline CV. The effect of subsidies

with a $3 billion program is small relative to the overall effect of climate change to date.
23 Visually, this is the difference in area under the dashed and solid lines in Figure 10, weighted by the distribution

of households in Figure A22. This number is sensitive to the total magnitude of the program: with a $300 million
program, 16% is lost, and with a $10 billion program, 26% is lost.
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Figure 11: Change in climate with subsidies relative to without subsidies for households in the
lowest income decile. The X-axis is a household’s decile in CV from the baseline simulation
comparing 2019 and 1990 climates relative to the entire population. We have filtered to just
households below the 10th income percentile in the baseline simulation. We calculate the
values on the Y-axis as a percent change in the respective climate variable relative to baseline
values for each group, normalized by the total amount of subsidies dispersed. See description
in the text on the subsidy distributions
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CV of 1%pt of income. Many of these households are “inframarginal”—they would have chosen
to live in these climate havens regardless of the subsidies. Well over 90% of subsidies in the
Positive Climate Change distribution are given to households who would have lived in a city
with increases in cliamte amenties absent the subsidies.

There is a 16% welfare loss among households in the lowest income decile due to migra-
tion and its resulting general equilibrium effects in the Positive Climate Change distribution.24

Since this simulation distributes subsidies to “climate havens”, the observed in-migration de-
creases exposure to climate change. The purple lines in Figure 11 show that low-income
households generally move to cooler and less flood-prone cities. These results emphasize that
a program designed to reduce climate exposure among low-income households must target
marginal households in order to be successful. Place-based policies are not well suited to
achieve this goal.

In summary, we find that place-based, means-tested subsidies distributed to places with
high climate damages may be an effective tool to help households with the largest impacts from
climate change. However, because households are mobile, some marginal households move
into high-climate-exposure cities, both exacerbating the existing disparities in climate exposure
and dissipating a portion of the program’s benefits, such as deadweight loss. Appendix E.1
demonstrates that these results qualitatively hold across a wide range of total program magni-
tudes. Since the policies we analyze redistribute funds from high- to low-income households,
they all reduce the aggregate disparities in welfare effects of climate change across race and
income that we quantified in our main results. The Negative Climate Change distribution is the
most effective of the three at reducing the welfare gaps.

8 Conclusion

We have found that climate change has already had and will continue to have significant
distributional consequences. Black and non-college-educated households are worse off under
climate change, owing not only to their ex-ante exposure to changes in climate but also due
to a differential ability to adapt. Black households are worse off by 0.5% of income relative
to white households from climate change to date, and that gap will continue to grow further
under various future emissions scenarios. In the worst-case emissions scenario, the gap grows
by over 4%pts of income at the end of the century. Low-income households are much worse off
than high-income households, with the welfare effect of climate change to date being 2 times
larger for the lowest-income decile as compared to the highest-income decile.

We evaluated the effectivenes of a place-based, means-tested subsidy program to address
24 This is the difference in area between the dashed and dotted lines in Figure 10. With a $300 million program,

<1% is lost, and $10 billion program, 30% is lost.
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the observed inequalities in the effects of cliamte change. We found that there is a fundamen-
tal tradeoff when using such place-based policies between targetting the places that have the
largest climate damages and altering exposure to future climate damages for low-income house-
holds. Policymakers must balance these when designing such place-based programs.

Future work can address other forms of inquality that may arise due to climate change.
For example, the urban heat island effect may lead to differential experienced climates within
cities that our model is not well suited to analyze. One could allow for households to choose
both their city and neighborhood in that city to directly model any within-city sorting.
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Appendix A Data Appendix

A.1 Sample Selection

We use 5% samples of the 1990 and 2000 censuses in addition to the 2010 and 2019 5-year
aggregated American Community Survey. In all years, of data, we drop individuals living in
group quarters, veterans, and any households younger than 16 and older than 64. We consider
the household head the decision maker—unless the head is unemployed and the spouse is
employed, in which case the spouse is the decision maker. We consider a household college
educated if they have at least four years of college.

A.2 City-Level Indices

In this section, we detail how we construct-city level estimates of energy consumption, wages,
and rents. In each section, we use individual data from the Census and American Community
Survey.

A.2.1 Energy Use

Our model features electricity and natural gas use in the household utility function. The main
concern is that some renters may not pay utility bills separately from rent and thus falsely report
zero energy expenditure in the census and ACS data. We follow Glaeser and Kahn (2010) and
use the EIA’s Residential Energy Consumption Survey (RECS) to correct this feature of the
census data. RECS directly reports energy consumption, but we cannot use it as our primary
data source since it does not report the location of each household and has a relatively small
sample. We proceed in two steps, first estimating city-demographic group-year level energy
consumption for single-family homeowners in the census data, then adjusting those estimates
by the difference between single-family homeowners and renters in the RECS data.

Specifically, we estimate the following regression for single-family homeowners in the
census,

em
id jt = φ

m
d jt + X↘id jt5

m + ςid jt, (34)

where em
id jt is use of energy type m ↑ {elec, gas} for household i, in demographic group d, city

j, and year t. Our vector of controls, X↘id jt, includes the number of people in the household,
the number of children, and the age of the household head. We estimate this for single-family
homeowners since they are most likely to report accurate energy expenditures in the census.
We then take the national average of the controls for each year-demographic group, X̄↘dt, and use
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the coefficients estimated in equation (34) to predict energy use for single-family homeowners
for each city, demographic group, and year,

ES FO
d jt = φ̂

elec
d jt + X̄↘dt5̂

elec (35)

GS FO
d jt = φ̂

gas
d jt + X̄↘dt5̂

gas. (36)

Then, we turn to the RECS, which is administered every three to six years. We match
our census years to the closest RECS survey available, using the 1993, 2001, 2009, and 2015
surveys.25 We estimate the following regression,

em
it = ω

1
mt MultiFamit + ω

2
mtRentit + ω3

mt MultiFamit ↗ Rentit + X↘it5mt + ςit, (37)

where em
it is use of energy type m ↑ {elec, gas}, MultiFamit is an indicator for whether household

i lives in a multifamily home in year t, Rentit is an indicator for whether household i rents
their home, X↘it is a vector of controls. The controls include indicators for the census division,
number of children, household size, age of the household head, and an indicator for whether
the household head is white. To estimate energy usage for each demographic group, we use the
estimated coefficients ω̂1

mt, ω̂2
mt, and ω̂3

mt to adjust the single-family owners estimates, ES FO
d jt and

GS FO
d jt , weighting by the proportion of single-family and multifamily renters as follows,

Ed jt = 6
S FO
d jt ES FO

d jt + 6
MFO
d jt ES FO

d jt eω̂
1
elec,t + 6S FR

d jt ES FO
d jt eω̂

2
elec,t + 6MFR

d jt ES FO
d jt e

∑
k ω̂

k
elec,t (38)

Gd jt = 6
S FO
d jt GS FO

d jt + 6
MFO
d jt GS FO

d jt eω̂
1
gas,t + 6S FR

d jt GS FO
d jt eω̂

2
gas,t + 6MFR

d jt GS FO
d jt e

∑
k ω̂

k
gas,t , (39)

where 6S FO
d jt , 6MFO

d jt , 6S FR
d jt , and 6MFR

d jt are the proportion of single/multifamily owners/renters in
demographic group d, city j, and year t.

A.2.2 Wages

We can write total income for a household of a demographic group d, in the city j and year t, as
Id jt = We jt↗ ldt, where ldt is the efficiency units of labor supplied by a worker in the demographic
group d in year t. Efficiency units account for the probability that a worker is employed, the
hours worked, and the productivity of that work conditional on being employed. Specifically,
25 The 1997 and 2001 RECS surveys did not ask about the education status of surveyed households. We use

divison, race, home type, rental status, and household size from 1993 and 2009 to predict the probability of each
observation in the 2001 sample being college educated using logistic regression. After predicting the probability
of being college educated, we draw actual outcomes according to the predicted probability.
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we have ldt = Edt ↗ l̃dt, where Edt is the probability that a household in the demographic group d
is employed in year t, and l̃dt is productivity conditional on working. We consider a household
employed if the household head or their spouse reports they are employed, work at least 48
weeks per year, and at least 35 hours per week.26 We parameterize the productivity term as
log l̃dt = X↘dt5et for a vector of controls X↘d, where e ↑ {No College, College} indexes education
level.

We first calculate Edt as the proportion of employed households in the demographic group
d and year t. Next, we estimate the following regression for employed households,

log Iid jt = X↘id jt5et + 3e jt + ςid jt, (40)

where 3e jt is a education-city-year fixed effect that estimates log(We jt). Our vector of controls,
X↘id jt includes whether the household is married, whether the household has over 25 years
of potential experience, and whether the household head or spouse is white. We assume
that no unobservable factors affect income after adding the vector of controls, X↘id jt, and the
education-city-year fixed effect. Baum-Snow and Pavan (2012) and Roca and Puga (2017)
provide evidence that after conditioning on education, there is little selection on unobservable
factors that affect income. We then calculate demographic-city-year income, Id jt, using esti-
mates of 3̂d jt and 5̂e , as Id jt = Edt ↗ exp(3̂e jt ↗ X̄↘dt5̂et). Here, X̄dt is the demographic group-year
average value for each control variable. Using demographic group-year averages holds these
observable characteristics constant across all cities.

A.2.3 Housing Quantity and Rent

Our model requires a quantity of housing units, H and the price for those housing units, PH
j , but

our data from the Census reports total housing expenditure. Specifically, the variable RENT
gives monthly contract rent payments in nominal dollars, which we convert to annual, real
dollars. Note that an individuals’ housing expenditures can be written as EH

i jt = PH
jt Hi jt where

Hi jt is the quantity of housing the individual consumes. We parameterize housing quantity as
Hi jt = X↘i jt5t, where X↘i jt is a vector of observable characteristics, including the number of rooms,
the number of units in the building, the number of bedrooms, the number of people living in
the house per room, and the decade the house was built. Plugging in our parameterization and
taking logs yields our estimating equation:
26 We assume that the probability of employment within a demographic group does not vary across cities.
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(a) Mean fire risk score (b) Mean flood risk score

Figure A1: Mean fire and flood risk scores from the First Street Foundation data by census
tract. The property-level scores range between 1 and 10, with 10 representing the most at-risk
property. White tracts are those not included in the public FSF data.

log(EH
i jt) = µ jt + X↘i jt5t + ςi jt. (41)

where µ jt is a city-year fixed effect that estimates PH
jt . The coefficients on all of the observable

housing characteristics are allowed to vary by year. We then define the per-unit cost of housing
using the city-year fixed effect, PH

jt = eµ jt , and quantity of housing as housing expenditure
divided by the per-unit cost of housing, Hi j = EH

i jt/P
H
jt . We limit the sample to renters aged

16 to 64 in this estimation. We refer to the per-unit cost of housing as rent throughout the
paper.

Appendix B Additional Descriptive Results

Figure A1 shows mean fire and flood risk scores by census tract from the First Street Foundation
data. The arid West generally has the highest fire risk scores, while the gulf coast has the highest
flood risk scores.

Figure A2 shows how the number of no-rain days and annual precipitation have changed
between 1990 and 2019. Generally, the eastern half of the US has gotten wetter.

Figures A3 and A4 show the relationship between 1990 share of each city’s population
that is low-income or non-white and changes in precipitation variables between 1990 and
2019. Similar to temperature, there is a positive relationship between the share of a city that
is low-income or non-white and increases in total precipitation. There is no clear relationship
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(a) Change in total precipitation per year (mm) (b) Change in the number of no rain days

Figure A2: Change in the no rain days and annual precipitation. No rain days are days with
less than 1mm of precipitation. Difference taken between 5 year moving averages and are
censored at the 5th and 95th percentiles of grid cells.

between the number of rain free days and either of the demographic variables.

B.1 Energy demand and climate

A robust energy justice literature explores differences in energy expenditures and demand be-
tween demographic groups. For example, Lyubich (2020) demonstrates that black households
spend more on energy than observably similar white households. We begin by replicating this
result using our census and ACS data. We regress total expenditure on electricity and natural
gas on indicators for race interacted with income decile, adding fixed effects for city, year,
education, and several other characteristics that may affect energy expenditures.27 Figure A5
shows the gap in energy expenditures between black and white households throughout the in-
come distribution. Black households spend more on energy than observably similar households
throughout the income distribution—aside from the highest income decile, where black house-
holds spend slightly less on electricity. These results suggest that either (1) black households
have stronger preferences for the services provided by this energy, or (2) black households
live in structures with unobservably lower energy efficiency. Research demonstrates that black
households have faced, and continue to face, more significant barriers in the housing market
than white households (Christensen, Sarmiento-Barbieri, and Timmins, 2021; Christensen and
Timmins, 2021).

The gap in expenditures between white and black households does not tell us whether they
respond differently to changes in weather. Thus, we run similar regressions but now include
27 Specifically, these are characteristics of the physical house: number of rooms, kitchen present, plumbing present,

decade built, units in the structure, and number of bedrooms, as well as characteristics about the household: the
number of children and marital status.
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Figure A3: Relationship between share non-white and climate. Each point is a city, where the
size of the point represents the city’s 1990 population. Low income defined as households in
the bottom quintile of the national income distribution in 1990. Regression lines are weighted
by population.

Figure A4: Relationship between share non-white and climate.Each point is a city, where the
size of the point represents the city’s 1990 population. Low income defined as households in
the bottom quintile of the national income distribution in 1990. Regression lines are weighted
by population.
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Figure A5: Black-white energy expenditure gap by income decile. The coefficients plotted are
those from a regression of energy expenditures on indicator variables for income decile and
income decile interacted with whether the household is black, with fixed effects for city, year,
education level, number of children, marital status, number of rooms, kitchen present,
plumbing present, decade built, units in the structure, and number of bedrooms. We randomly
downsampled to 1 million observations to ease computation. Standard errors are clustered by
city.

CDD and HDD as regressors and look for heterogeneity in the effects of CDD and HDD on energy
expenditure by race and income. We add the same battery of fixed effects as before. Table A1
shows heterogeneity in the effect of degree days by race. Black households increase spending
by more than white households for an increase in HDD and by less than white households
for an increase in CDD. Differences in the predominant heating fuel may explain this—black
households increase electricity expenditure by more than white in response to more HDDs and
decrease their natural gas use by less than white households in response to CDDs.

Next, we explore heterogeneity in the effect of degree days across the income distribution.
Figure A6 shows how the effect of degree days on energy expenditures differs from the fifth
income decile for the rest of the income distribution. The wealthiest households have the
strongest increase in electricity expenditure in response to more CDDs and in natural gas
expenditure in response to HDDs. Generally, the electricity response to HDDs is decreasing
in income—suggesting that low-income households are more likely to use electricity as their
heating fuel source. Since the highest income decile is least likely to be income-constrained with
respect to their electricity spending, these results may suggest that their stronger response in
CDD is the result of always maintaining their preferred indoor temperature. Other households
may have a lower expenditure response if they tolerate a higher indoor temperature when it
is hotter outside instead of spending more money on electricity to run air conditioning more
intensely.
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Table A1: Effect of CDD and HDD on Energy Expenditures.

Dep. Var. Total Electricity Natural Gas
Model: (1) (2) (3)

Variables
Black 155.0↔ -27.22 143.3↔↔↔

(87.76) (68.10) (49.16)
HDD ↗ Black 0.0580↔↔ 0.0493↔↔ 0.0235

(0.0251) (0.0191) (0.0154)
HDD 0.0434 0.0989↔ -0.0569

(0.0801) (0.0503) (0.0500)
CDD ↗ Black -0.0740 -0.0126 -0.0440↔

(0.0519) (0.0400) (0.0255)
CDD 0.3588↔↔ 0.1204 0.2531↔↔

(0.1370) (0.1295) (0.1263)

Fit statistics
Observations 820,930 872,960 829,054
R2 0.30894 0.31055 0.18668
Within R2 0.00411 0.00117 0.00528

Clustered (City) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Regresions include city, year, education, number of children, marital status, kitchen, number of
rooms, plumbing, decade built, units in structure, number of bedroom fixed effects. Data from
downsampled census and ACS data from 1990, 2000, 2010, and 2019 matched to PRISM data
from that year.
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Figure A6: Heterogeneity in the effect of degree days on energy expenditures by income
decile. The coefficients plotted are those from a regression of energy expenditures on CDD and
HDD interacted with indicator variables for income decile, with fixed effects for city, year,
education level, number of children, marital status, number of rooms, kitchen present,
plumbing present, decade built, units in the structure, and number of bedrooms. Thus, the
estimates are difference in effects of degree days for an income decile relative to the fifth
income decile. We randomly downsampled to 1 million observations to ease computation.
Standard errors are clustered by city.

Figure A7 shows heterogeneity in degree days’ effect by race and income decile. All esti-
mates are relative to white households in the fifth income decile. Black and white households re-
spond similarly in electricity expenditure to CDDs, except for the highest income decile—where
white households have a much stronger response. Black households tend to have stronger
responses to HDDs, though these differences are generally not statistically significant.

We can also use the Residential Energy Use Survey (RECS) to evaluate how households
respond to climate. Though the surveys here do not report the respondents’ exact locations,
the EIA does report HDD and CDD for those locations.28 We are interested in heterogeneity
in household energy responses to changes in climate. We regress electricity and natural gas
usage on HDD and CDD, as well as interactions between climate variables and race. We add
year, census division, and race fixed effects. The results, shown in Table A2, are descriptive
rather than causal—demonstrating differences in energy demand responses to climate by race.
Households increase their electricity usage in response to higher HDD and CDDs. Black house-
holds are less responsive than white households on average, though the coefficients are not
statistically significant. The results for natural gas usage are surprising—the coefficient on HDD
is not significant, and the coefficient on CDD is negative and significant. This unintuitive result
28 The EIA adds noise to this measure to prevent identifying the respondent’s exact location. This noise will slightly

attenuate the results presented here.
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Figure A7: Heterogeneity in the effect of degree days on energy expenditures by income
decile and race. The coefficients plotted are those from a regression of energy expenditures on
CDD and HDD interacted with indicator variables for income decile and race, with fixed effects
for city, year, education level, number of children, marital status, number of rooms, kitchen
present, plumbing present, decade built, units in the structure, and number of bedrooms.
Thus, the estimates are difference in effects of degree days for an income decile relative to
white households in the fifth income decile. We randomly downsampled to 1 million
observations to ease computation. Standard errors are clustered by city.

may be because households in warmer climates (high CDDs and low HDDs) are less likely to
have natural gas heaters. We find that black households have a stronger demand response for
natural gas to HDDs.

Appendix C Model

C.1 Derivation of Comfort and Energy Prices

We can solve the households utility maximization problem conditional on choosing city j in
three steps. First, households will consume gas and electricity in a cost-minimizing manner
to produce a given amount of energy. The first-order conditions from minimizing the cost of
energy using equation (2) give us the following conditional demand functions for electricity
and gas.

E↔(E|d, j) = MEd j

(
PG

j ϖ
E
d j

)ϑE E, (42)

G↔(E|d, j) = MEd j

(
PE

j ϖ
G
d j

)ϑE E (43)
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Table A2: Effect of CDD and HDD on Energy Demand.

Dep. Var. Electricity Usage (kWh) Natural Gas Usage (cu ft)
Model: (1) (2)

Variables
HDD 0.6920↔↔↔ 0.5345

(0.0644) (0.7423)
CDD 1.274↔↔ -5.781↔↔

(0.2925) (1.760)
HDD ↗ Race = Black -0.1726 7.200↔↔

(0.1237) (2.134)
HDD ↗ Race = Rest 0.1121 0.9732

(0.0809) (0.8979)
CDD ↗ Race = Black -0.1448 3.088

(0.3853) (1.452)
CDD ↗ Race = Rest -0.0347 -0.2569

(0.0833) (0.9812)

Fit statistics
Observations 29,702 29,702
R2 0.15988 0.18400
Within R2 0.01079 0.02157

Clustered (year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Regresions include year, census division, and race fixed effects. Data from the 1993, 2001,
2009, and 2015 RECS surveys.
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where MEd j =
(
ϖEd j
ϑEPG

d j
ϑE↓1
+ ϖGd j

ϑEPE
d j
ϑE↓1) ϑE1↓ϑE . These conditional demand functions allow us to

derive a unit cost function for energy that does not depend on the quantity of energy. We will
use this unit cost function as the price of energy,

PEd j =
(
ϖEd j
ϑEPE

j
1↓ϑE
+ ϖGd j

ϑEPG
j

1↓ϑE
) 1

1↓ϑE (44)

Similarly, Households will produce comfort using energy and housing in a cost-minimizing
manner. The first-order conditions from minimizing the cost of producing comfort using (1)
give us the following conditional demand functions for energy and housing.

H↔(C|d, j) = Mc
d jP
E
d j
ϑcCd j, (45)

E↔(C|d, j) = Mc
d jP

H
j
ϑcCd j (46)

where Mc
d j =
(
PH

d j
ϑc↓1
+ PEj

ϑc↓1
) ϑc

1↓ϑc We can use the unit cost function derived from these condi-
tional demand functions to calculate the price of comfort

PCd j =
(
PH

d j
1↓ϑc
+ PEd j

1↓ϑc
) 1

1↓ϑc (47)

We also use the derived demand for comfort to yield the unconditional housing and energy
demand functions:

H↔d j = Mc
d jP
E
d j
ϑc ↗

ωCd j(Id j + Υd)

PCd j

(48)

E↔d j = Mc
d jP

H
j
ϑc MEd j

(
PG

j ϖ
E
d j

)ϑE ↗
ωCd j(Id j + Υd)

PCd j

(49)

G↔d j = Mc
d jP

H
j
ϑc MEd j

(
PE

j ϖ
G
d j

)ϑE ↗
ωCd j(Id j + Υd)

PCd j

. (50)

C.2 Marginal effect of climate on comfort demand

Here we see how changes in climate affect demand for electricity, gas, and housing. The
derivative of electricity demand with respect to climate variable zl is
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↽E
↽zl =

⇀E
εE(1 ↓ εE)

E

εE +

PEE
PEE

(
1 ↓ εE
1 ↓ εC

(
1 ↓ εC

PEE
PCC

)
↓ 1
)

(51)

This effect has three main pieces, the first term in brackets comes from the direct effect
of increases in zl increasing ϖE, this will always be positive. The second effect comes from the
change in energy demand, which moves in the opposite direction as the price of energy (which
moves in the same direction as the price of comfort). The final effect comes from increasing the
denominator of the “share” function, ME, which will always be the opposite sign as the effect
from changes in energy demand.

Changes in gas demand are similar, as the conditional demand function for gas has the
same denominator of the share function and energy, but those are the only two effects. Thus,
if energy price rises, decreasing the demand for energy, this will have a negative effect on gas
demand. Additionally, the increases in the denominator of the share function for energy will
further decrease demand for gas

↽G
↽zl =

⇀E
εE(1 ↓ εE)

G
PEE
PEE


1 ↓ εE
1 ↓ εC

(
1 ↓ εC

PEE
PCC

)
↓ 1

. (52)

Changes in housing demand depend on the change in the denominator of the share
function for comfort and changes in comfort demand. If the price of comfort increases, then
comfort demand will decrease, thereby decreasing housing demand. Additionally, if the price
of energy increases, then this will increase (decrease) the denominator of the share function
if housing and energy are complements (substitutes), causing housing demand to decrease
(increase).

↽H
↽zl =

⇀E
εE

H
PEE
PCC


1

1 ↓ εC
PHH
PEE + 1


(53)

C.3 Firm FOC derivation

In this section, we give the details on solving the firm’s problem. Plugging the labor aggregator
(13) into the production function (12), the firm’s profit function is

6 j = BjKωj
(
⇁ jS

εl
j + (1 ↓ ⇁ j)L

εl
j

) 1↓ω
εl ↓WS

j S j ↓WL
j L j ↓ rK j.
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Each firm chooses capital K j, college educated labor S j, and non-college educated labor L j to
maximize profit. Taking the derivative with respect to each choice, we have the following first
order conditions,

r = ω
Y j

K j

WS
j = (1 ↓ ω)

(
Y j

L j

)
L1↓εl

j ⇁ jS εl↓1

WL
j = (1 ↓ ω)

(
Y j

L j

)
L1↓εl

j (1 ↓ ⇁ j)Lεl↓1.

We assume capital is supplied perfectly elastically on the international market at rate r̄. Thus,
capital demand is K,j =

ωY j
r̄ . Plugging this into the production function yields Y j = B

1
1↓ω
j

(
ω
r̄

) ω
1↓ω L j.

Letting B̃ j = (1 ↓ ω)B
1

1↓ω
j

(
ω
r̄

) ω
1↓ω , we have the first order conditions in equation (14).

C.4 Labor Demand Parameters

In this section, we describe our calibration and estimation of the labor demand parameters:
labor elasticity of substitution ϑl and the labor input use intensities, ⇁ j. We suppress t-subscripts
as with the above sections for exposition, but use the following procedure for each of our sample
years. First, we calibrate ϑl = 2 based on Card (2009). Then we use the relative labor demand
curves to identify ⇁ j. The relative labor demand curves are given by:29

log




WS
j

WL
j




!!!!!!!!!!
Estimated

= ↓ 1
ϑl

Calibrated

log
(
S j

L j

)

!!!!!!!!
Data

+ log
(
⇁ j

1 ↓ ⇁ j

)

!!!!!!!!!!!!!!!!!!
Unknown

. (54)

Note that the only unknowns in equation 54 are the ⇁ j values. We can solve for these as:

⇁ j =
K j

1 + K j
, (55)

where

K j =




WS
j

WL
j




(
S j

L j

)1/ϑl

.

29 Note that εl ↓ 1 = ↓ 1
ϑl

.
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Next, we can solve for the firm’s TFP using either first order condition for college or
non-college labor as there is only one unknown.

C.5 Housing Supply Calibration

In this section, we describe the calibration of the rental supply parameters. First, we calibrate
the inverse supply elasticities to those in Saiz (2010), specifically the inverse of the elasticities
reported in Table VI. Some of our cities, Sacramento, Honolulu, and the census division
aggregates, are not included in this table—we set the elasticity for Sacramento and the census
division aggregates equal to the mean elasticity and calculate an elasticity for Honolulu using
estimates from column (4) of Table III, setting land-unavailable equal to the maximum and the
WRI to the mean. The remaining parameters from the housing supply curve, equation (15),
are the intercepts, a j. Since housing supply equals housing demand in equilibrium, we back
these out from the data as

exp a jt =
PH

jt
(∑

d Nd jtHd jt
)ζ j
,

where Nd jt is the count of housholds in demographic group d and city j in year t, and Hd jt is
housing demand.

C.6 Equilibrium Definition

An equilibrium is characterized by households maximizing utility, firms maximizing profits, and
the labor and housing markets clearing. Specifically,

(1) Utility Maximization. Households make optimal location and comfort demand choices
given wages, comfort prices, and amenities. These household choices give us aggregate
housing, electricity, and gas demand, and labor supply. Household location choices give
the population of each demographic group in each city, N,d j = s,d j ↗ N where s,d j are the
choice shares constructed from equation (7), evaluated at equilibrium prices.

s,d j =
1
N

∑

i↑d
P,i j

Aggregate housing demand in each city will be the sum over each demographic group’s
housing demand, H,d j determined according to equation (48), multiplied by the number
of households in that city-demographic group,

HD
j =
∑

d

N,d jH
,
d j
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Similarly, energy and gas demand in each city are the sum of each demographic group’s
electricity and gas demand, E,d j from equation (49) and G,d j from equation (50), multi-
plied by the number of households in that city-demographic group,

ED
j =
∑

d

N,d jE
,
d j

GD
j =
∑

d

N,d jG
,
d j

Finally, labor supply for college and non-college educated labor in each city are the sum
of efficiency units for households who live in that city,

S S
j =
∑

d↑dS

N,d jld

LS
j =
∑

d↑dL

N,d jld

where dS are the college-educated demographic groups and dL are the not-college-
educated demographic groups.

(2) Profit Maximization. Firms maximize profits according to the first order conditions of
their profit maximization problem in equation (14). This determines labor demand in
each city for college and non-college-educated workers.

(3) Market clearing. In the model, labor and housing markets must clear. Labor demand
must equal labor supply for both college and non-college educated workers, S D

j = S S
j and

LD
j = LS

j , in all cities j. Additionally, housing supply given by equation (15) must equal
housing demand, HS

j = HD
j , in all cities j.

C.7 Equilibrium Outline

In this section, we provide an overview of how we solve for the counterfactual in which all
margins can adjust. We denote the counterfactual vector of climate variables as Z̃. Amenities
are exogenous (to household location choices), so we first recalculate amenities under the new
vector of climate variables Z̃. The algorithm for obtaining the new spatial equilibrium is:

(1) Guess a vector of choice shares for each demographic group, s0
d j where where 0 denotes

iteration number (not time). Use this guess to calculate demographic city population
levels as N0

d j = s0
d j ↗ N. Additionally, we guess a vector of housing prices, PH,0

j .

(2) Use our guesses and the firms first order conditions (14) to calculate city-education wages.
Convert those wages to income by adjusting for efficiency units and calculating unearned
income from rental profits in equation (16).

62



(3) We then use our guesses and the counterfactual climate Z̃ with household first order
conditions (5) and (4) to calculate the price of comfort and price of energy.

(4) Since housing demand is affected by the climate as well, we then clear the housing
market. Given PH,0

j and our implied comfort prices, energy prices, and income, we use
the household first order condition from equation (48) to calculate housing demand,
denoted as H0

d j. We aggregate housing demand to the city level, H0,D
j and plug this into

the rental supply curve in equation 15, noting that in equilibrium, the quantity of housing
supplied must be equal to the quantity of housing demanded. This yields a new housing
price, which we denote P̃H,0

j . We check if P̃H,0
j = PH,0

j . If they are not equal, we update the
price of housing as PH,1

j = ωP̃H,0
j + (1↓ω)PH,0

j for ω ↑ (0, 1) and start again at the beginning
of this step. Once the housing market clears, we have a new vector of housing prices,
which we can use to calculate comfort prices.

(5) Re-calculate the city choice shares given the new income and comfort prices. We denote
these new choice shares as s̃0

d j. Check if s̃0
d j = s0

d j. If not, we update our guess of the
shares as s1

d j = ωs̃0
d j + (1 ↓ ω)s0

d j for ω ↑ (0, 1) and return to step (2).

Appendix D Estimation Appendix

D.1 Alternative specifications for effect of climate on comfort

We could allow for heterogeneity in the effect of climate on preferences for electricity and
gas by demographic group by estimating different ⇀’s for each demographic group. Figure A8
estimates our main specification separately for each of the six demographic groups we have
in our model. While this estimation does not provide clear evidence that there are differences
by race or college education, black households may have a slightly more muted gas response
to cold days. This is consistent with Doremus, Jacqz, and Johnston (2022), who find similar
responses in energy expenditures between high- and low-income households except among the
most extreme temperature days.
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(a) Estimates of the effect of climate on log ϖE .

(b) Estimates of the effect of climate on log ϖG

Figure A8: Estimation results for the effect of climate on comfort production using cubic
B-splines of degree 7 with heterogeneity by demographic group. Standard errors are
bootstrapped over 10,000 draws clustering by city and year.

However, there could still be heterogeneity in the effect of climate on comfort price since
other parameters in the comfort price function are heterogeneous by demographic group. Fig-
ure A9 shows the marginal effect of a day in each temperature bin on comfort price by demo-
graphic group. There are some differences between races, though they are small in magnitude
and within the bootstrapped confidence intervals.

Figure A10 shows results for an alternative specification of log ϖ’s using 14 temperature
bins, one for every decile, plus breaking the top and bottom deciles by the top and bottom 1 and
5 percent. Coefficients are interpreted as the effect of an additional day in each temperature
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Figure A9: The effect of an additional day at temperature on comfort price by race.

bin relative to a day in the median temperature bin. Standard errors are clustered by city.
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(a) Estimates of ⇀E , the effect of climate on log ϖE

(b) Estimates of ⇀G, the effect of climate on log ϖG

Figure A10: Estimation results for the effect of climate on comfort production, parameters ⇀E

and ⇀G. Our preferred specification includes demographic group and city fixed effects.
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D.2 Energy and comfort prices

Figure A11 shows predicted and actual comfort expenditure.

Figure A11: Predicted vs actual comfort expenditure

Figure A12 shows how log comfort price is correlated with log rent and log energy prices
by demographic group. We expect comfort prices to be determined largely by rent, but also be
affected by energy prices, since rent makes up a much larger share of expenditure than energy
does. This is exactly how it turns out in our model, with comfort prices more tightly correlated
with rent than energy prices, but comfort prices are increasing in both rent and energy prices
for all demographic groups.

Table A3 shows average comfort and housing expenditure, as well as degree days for
selected cities in 2019, ordered by the percent difference between comfort and housing ex-
penditure. We can see that generally, the places with a larger difference between comfort and
housing expenditure are cities with more extreme climates, as measured by heating and cooling
degree days. Thus, climate is an important part determining the cost of comfort for households
beyond just the rent that they pay. We show in the appendix, figure A12, that comfort price is
positively correlated with both rent and energy prices, as we would expect.
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Figure A12: Rent and Energy Prices versus Comfort Price by demographic group

(a) Comfort Price vs Rent

(b) Comfort Price vs Electricity Price

(c) Comfort Price vs Natural Gas Price

Each observation is a city, size represents the 1990 population of each city.
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City Rank Comfort Exp Housing Exp \% Diff HDD CDD

Highest
Birmingham, AL 1 9,640 6,954 28 1,347 1,244
Memphis, TN 2 10,409 7,553 27 1,684 1,255
Youngstown, OH 3 7,847 5,744 27 3,364 407
Tulsa, OK 4 9,217 6,910 25 1,976 1,129
Toledo, OH 5 9,646 7,239 25 3,291 540

Middle
Atlanta, GA 33 13,325 11,003 17 1,493 1,121
Allentown, PA 34 13,270 10,964 17 3,083 515
New Orleans, LA 35 11,968 9,912 17 596 1,873
Worcester, MA 36 14,439 11,966 17 3,561 366
Virginia Beach, VA 37 13,316 11,061 17 1,727 1,094

Lowest
Los Angeles, CA 66 19,887 18,243 8 586 788
San Diego, CA 67 21,218 19,806 7 661 571
Oxnard, CA 68 22,177 20,802 6 824 436
San Francisco,CA 69 24,792 23,256 6 1,351 151
San Jose, CA 70 26,357 24,824 6 1,206 340

Table A3: Cities ranked by the percent difference between their average comfort expenditure
and average housing expenditure in 2019.

Tables A4 shows an alternative version of A3, but using comfort prices and rent instead of
expenditures. Results are largely similar, places with more extreme temperatures see a larger
difference between their comfort price and rent. Note that rent here is the per-unit cost of
housing, as described in section A.2.3.
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City Rank Comfort Price Rent % Diff HDD CDD

Highest
Youngstown, OH 1 7,589 4,399 42 3,514 475
Birmingham, AL 2 8,945 5,222 42 1,468 1,200
Buffalo, NY 3 10,246 6,044 41 3,840 365
Springfield, MA 4 10,950 6,483 41 3,581 356
Toledo, OH 5 8,205 4,876 41 3,483 529

Middle
Albany, NY 33 12,563 7,940 37 3,988 283
Charlotte, NC 34 11,205 7,106 37 1,926 891
Knoxville, TN 35 9,013 5,721 37 2,423 634
Kansas City, MO 36 10,170 6,458 36 2,684 908
Baltimore, MD 37 14,342 9,124 36 2,854 645

Lowest
San Francisco,CA 66 22,345 15,790 29 1,230 465
Miami, FL 67 15,053 10,701 29 113 2,268
Seattle, WA 68 16,778 11,952 29 3,899 38
Austin, TX 69 12,680 9,063 29 1,014 1,856
San Jose, CA 70 24,121 17,426 28 1,276 569

Table A4: Cities ranked by the percent difference between their average comfort price and
average housing price in 2019.

Additionally, A5 shows the top and bottom cities by energy E and comfort C demand. This
is comparable to Table 6 from Quigley and Rubinfeld (1989), who estimate "produced comfort"
and "dwelling comfort", which are similar to our estimates for energy and comfort respectively.
The results qualitatively match, showing that cities with mild climates spend much less on
energy than those with more extreme climates.
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Rank City Energy Rank City Comfort

1 Memphis, TN 1,344.23 1 Austin, TX 1.32
2 Phoenix, AZ 1,153.55 2 Orlando, FL 1.31
3 Oklahoma City, OK 1,146.01 3 San Antonio, TX 1.31
4 Tulsa, OK 1,138.82 4 Bridgeport, CT 1.30
5 San Antonio, TX 1,114.08 5 Phoenix, AZ 1.30

6 New Orleans, LA 1,089.29 6 Tucson, AZ 1.26
7 Dallas, TX 1,073.29 7 Tampa, FL 1.25
8 Houston, TX 1,064.20 8 Miami, FL 1.24
9 Orlando, FL 1,053.08 9 Seattle, WA 1.23

10 Miami, FL 1,040.23 10 Washington, DC 1.23

61 Providence, RI 479.21 61 Oxnard, CA 1.08
62 Sacramento, CA 468.82 62 Los Angeles, CA 1.07
63 Boston, MA 461.41 63 Kansas City, MO 1.06
64 Albany, NY 461.41 64 Memphis, TN 1.06
65 Los Angeles, CA 453.56 65 Buffalo, NY 1.06

66 Honolulu, HI 438.53 66 Syracuse, NY 1.04
67 San Diego, CA 401.64 67 Albany, NY 1.03
68 Oxnard, CA 381.63 68 Youngstown, OH 1.02
69 San Jose, CA 378.38 69 Rochester, NY 1.02
70 San Francisco,CA 359.54 70 Grand Rapids, MI 0.99

Table A5: Cities ranked by their average aggregate energy demand E and comfort demand C
in 2019.

D.3 Energy Efficiency: Evidence

In this section, we provide evidence of heterogeneity in energy-efficiency by demographic group
and across time. Specifically, we plot city-level densities of aggregate energy use E divided
by housing, H. In each figure, E is calculated using equation 2 evaluated at estimates from
column 1 of Table 1. Housing is calculated as in Section A.2.3. We interpret a larger value
of this ratio as loosely indicative that homes in a particular city/demographic group are less
energy-efficient.30

30 However, it could also be reflect differences in the strength of preferences for housing relative to energy.
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Figure A13: Energy-efficiency by education group across years and CBSAs
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Figure A14: Energy-efficiency by education-group across years and CBSAs
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Figure A15: Energy-efficiency by demographic-group across years and CBSAs

2010 2019

1990 2000

0.2 0.4 0.6 0.1 0.2 0.3 0.4

0.2 0.4 0.6 0.1 0.2 0.3 0.4 0.5
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Energy-Housing Ratio

Pr
op

or
tio

n

College White

Non-college White

College Black

Non-college Black

College Nonwhite/black

Non-college Nonwhite/black

Notes: Energy-efficiency by demographic group across years and CBSAs.

D.4 Moving Cost Parameters for All Years

Table A6: Household moving costs estimated from equation 31 for 1990. Standard errors are
in parenthesis. We estimate standard errors using numerical derivatives. Distance is measured
in thousands of miles.

Non-College College

φ̃st φ̃dist φ̃dist2 φ̃st φ̃dist φ̃dist2

White 1.377 -5.052 1.439 1.264 -3.842 1.13
(0.0003) (0.0002) (0.0001) (0.0009) (0.0006) (0.0003)

Black 1.72 -4.878 1.672 1.645 -4.437 1.499
(0.0026) (0.0037) (0.0058) (0.0196) (0.0359) (0.0467)

Other 1.654 -1.277 0.197 2.137 -0.415 0.017
(0.0455) (0.1019) (0.1646) (0.0433) (0.1649) (0.0496)
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Table A7: Household moving costs estimated from equation 31 for 2000. Standard errors are
in parenthesis. We estimate standard errors using numerical derivatives. Distance is measured
in thousands of miles.

Non-College College

φ̃st φ̃dist φ̃dist2 φ̃st φ̃dist φ̃dist2

White 1.305 -5.254 1.548 1.265 -3.961 1.191
(0.0002) (0.0001) (0.0001) (0.0006) (0.0004) (0.0002)

Black 1.732 -5.279 1.83 1.618 -4.589 1.578
(0.0022) (0.0030) (0.0034) (0.0130) (0.0274) (0.0320)

Other 1.639 -1.178 0.18 1.996 -0.452 0.036
(0.0098) (0.0189) (0.0294) (Inf) (Inf) (Inf)

Table A8: Household moving costs estimated from equation 31 for 2010. Standard errors are
in parenthesis. We estimate standard errors using numerical derivatives. Distance is measured
in thousands of miles.

Non-College College

φ̃st φ̃dist φ̃dist2 φ̃st φ̃dist φ̃dist2

White 1.215 -5.224 1.484 1.267 -4.039 1.196
(0.0002) (0.0002) (0.0001) (0.0005) (0.0003) (0.0001)

Black 1.752 -5.223 1.762 1.671 -4.527 1.54
(0.0008) (0.0012) (0.0013) (0.0264) (0.0225) (0.0195)

Other 1.746 -1.119 0.164 2.056 -0.49 0.045
(0.0294) (0.0865) (0.1664) (13.7887) ( 0.0622) ( 0.0271)

Table A9: Household moving costs estimated from equation 31 for 2019. Standard errors are
in parenthesis. We estimate standard errors using numerical derivatives. Distance is measured
in thousands of miles.

Non-College College

φ̃st φ̃dist φ̃dist2 φ̃st φ̃dist φ̃dist2

White 1.146 -5.335 1.547 1.252 -4.201 1.263
(0.0002) (0.0002) (0.0001) (0.0004) (0.0003) (0.0002)

Black 1.7 -5.565 1.895 1.59 -4.654 1.588
(0.0011) (0.0014) (0.0015) (0.0074) (0.0056) (0.0056)

Other 1.784 -1.116 0.172 1.978 -0.557 0.057
(0.0097) (0.0191) (0.0170) (0.0100) (0.0258) (0.0240)
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Figure A16: Estimate of MWTP as a percent of income for an additional day at the given
temperature, normalized to a day at 65 degrees F. This is calculated by rescaling 5̂Z

e (1) by 5w
e .

Standard errors are calculated with clustered bootstrapping using 10,000 draws, clustered by
city-year. We have limited the range of temperature to between the 1st and 99th percentile of
average daily temperature, weighted by 1990 population.

D.5 Climate amenities

Figure A16 shows the effect of temperature on climate amenities using different measures of
temperature—splines, temperature bins, and degree days.

D.6 Model fit

Figure A17 shows model fit for rents and wages when comparing baseline simulations to actual
data.
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(a) Simulated vs actual rents. (b) Simulated vs actual wages.

Figure A17: Model fit when using observed climate to simulate the model. Each observation is
a demographic group for a particular city and a particular baseline year (1990, 2000, 2010, or
2019). The size of dots represents the number of households in that demographic group-cbsa
in the actual data.

Appendix E Additional Results

Figure A19 shows the full distribution of CV across all households.

Table A10 has the welfare effects across different decompositions in levels for both white
and black households.
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(a) Average change in rent. (b) Average percent change in wages.

(c) Average percent change in electricity demand. (d) Average percent change in gas demand.

Figure A18: Change in prices and demand across states. Averages are weighted by population.
For states without any CBSAs in them, we use the value for the census division in which the
state is located.
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Figure A19: Compensating Variation by race in 2019 if the climate was the same as in 1990.

Table A10: Decomposition of welfare effects. Values are CV as a percent of income.

Climate Effect From

Both Amenities Comfort

Fixed Location
White 5.09 4.70 7.63
Black -0.52 -0.64 2.57
Difference -5.61 -5.34 -5.05

Fixed Location, adjust comfort
White -2.16 4.70 0.38
Black -2.97 -0.64 0.13
Difference -0.81 -5.34 -0.25

Sorting, fixed prices
White -2.59 4.36 0.38
Black -3.45 -1.00 0.12
Difference -0.87 -5.35 -0.26

Full Effects
White -2.48 -2.82 0.37
Black -2.95 -3.17 0.25
Difference -0.47 -0.35 -0.12

Table A11 shows the top and bottom 10 cities by change in population under this historical
climate today counterfactual. We see that people generally leave the places that are getting
hotter—such as Florida and California, and move to the places that become more pleasant, in
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the upper Midwest.

Table A11: Changes in population using 1990 climate as a counterfactual in 2019

City Change in Pop (%)

Growing Cities
Grand Rapids-Wyoming, MI 23.4
Hartford-West Hartford-East Hartford, CT 17.0
San Antonio, TX 16.2
Cincinnati-Middletown, OH-KY-IN 15.2
Denver-Aurora, CO 14.8
Tulsa, OK 14.5
Oklahoma City, OK 14.5
Kansas City, MO-KS 14.4
Albany-Schenectady-Troy, NY 14.2
New Haven-Milford, CT 14.1

Declining Cities
Richmond, VA -2.9
Youngstown-Warren-Boardman, OH-PA -4.5
Columbus, OH -4.7
South Atlantic Division -4.7
Omaha-Council Bluffs, NE-IA -5.0
West South Central Division -7.0
St. Louis, MO-IL -7.1
Dayton, OH -8.4
Houston-Baytown-Sugar Land, TX -9.5
Louisville, KY-IN -9.6

Climate change has contributed to the increase in the college wage gap. Figure A20a
shows the distribution of wage changes across cities. We find that wages increase for college
households and decrease for non-college households. To see why, recall that the firm’s FOC (14)
implies that the ratio of college to non-college workers pins down the wage ratio, and these
ratios are inversely related since college and non-college workers are imperfectly substitutable
(εl < 1). Since college households are more mobile than non-college households, the college-
noncollege worker ratio tends to decrease, as shown in Figure A20b—more so in cities where
the climate is deteriorating. Thus, college wages increase in those deteriorating cities, and
non-college wages decrease.

E.1 IRA Subsidies

Figure A21 shows the share of each state’s population that lives in a disadvantaged community
according to census block group level population from the 2020 Census.
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(a) Change in wages by education level. (b) Effect of worker ratio on wage ratio.

Figure A20: College and non-college wages comparing present day climate to that of 1990.
The worker ratio is college workers divided by non-college workers. The size of the points
reflect a city’s baseline population.

Figure A21: Share of the population living in a disadvantaged community. We use the EPA’s
Disadvantaged Communities Map to define census tracts as disadvantaged. The total
population in each census tract comes from the 2020 Decennial Census (Walker and Herman,
2024).
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Figure A22: Distribution of baseline CV by income group. The X-axis is a household’s
percentile in CV from the baseline simulation comparing 2019 and 1990 climates. We split the
figure into three income bins, below 10th percentile, 10th-50th percentile, and above 50th
percentile based on household expected income in the baseline simulation.

Figure A23: CV for 2019 climate with and without subsidies relative to the 1990 climate
without subsidies. The X-axis is a household’s decile in CV from the baseline simulation
comparing 2019 and 1990 climates. The Y-axis is average CV under 2019 cliamte relative to
without subsidies under the 1990 climate. We split the figure into three income bins, below
10th percentile, 10th-50th percentile, and above 50th percentile based on household expected
income in the baseline simulation. See description in the text on the subsidy distributions
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Figure A24: CV for 2019 climate with and without subsidies relative to the 1990 climate
without subsidies for different magnitudes, G. The X-axis is a household’s decile in CV from
the baseline simulation comparing 2019 and 1990 climates. The Y-axis is average CV under
2019 cliamte relative to without subsidies under the 1990 climate. We split the figure into
three income bins, below 10th percentile, 10th-50th percentile, and above 50th percentile
based on household expected income in the baseline simulation. See description in the text on
the subsidy distributions
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Figure A25: Percent change in population under different subsidy program magnitudes and
distributions. The underlying data are city-level, and the plotted lines are smoothed fit from a
generalized additive model weighted by city population. The X-axis represents a city’s rank in
change in climate amenties from 1990 to 2019. The Y-axis is the percent change in population
divided by the total size of the program, and the different sizes are differentiated by color.
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Figure A26: Percent change in rents under different subsidy program magnitudes and
distributions. The underlying data are city-level, and the plotted lines are smoothed fit from a
generalized additive model weighted by city population. The X-axis represents a city’s rank in
change in climate amenties from 1990 to 2019. The Y-axis is the percent change in rents
divided by the total size of the program, and the different sizes are differentiated by color.
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Figure A27: Percent change in wages under different subsidy program magnitudes and
distributions. The underlying data are city-education-level, and the plotted lines are smoothed
fit from a generalized additive model weighted by city population. The X-axis represents a
city’s rank in change in climate amenties from 1990 to 2019. The Y-axis is the percent change
in wages divided by the total size of the program, and the different sizes are differentiated by
color. We differentiate between college and non-college educated wages.
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